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Recently, physically important examples of dynamical systems that have a chaotic attractor embedded in an
invariant submanifold have been pointed out, and the unusual dynamical consequences of this situation have
been studied. As a parametere of the system is increased, a periodic orbit embedded in the attractor on the
invariant manifold can become unstable for perturbations transverse to the invariant manifold. This bifurcation
is called thebubbling transition, and it can lead to the occurrence of a recently discovered, new kind of basin
of attraction, called ariddled basin. In this paper we study the effects of noise and asymmetry on the bubbling
transition. We find that, in the presence of noise or asymmetry, the attractor is replaced either by a chaotic
transient or an intermittently bursting time evolution, and we derive scaling relations, valid near the bubbling
transition, for the characteristic time~i.e., the average chaotic transient lifetime or the average interburst time
interval! as a function of the strength of the asymmetry and the variance of the additive noise. We also present
numerical evidence for the predicted scalings.@S1063-651X~96!12508-3#

PACS number~s!: 05.45.1b

I. INTRODUCTION

Many chaotic dynamical systems of physical interest pos-
sess symmetries. These systems have invariant manifolds
embedded in their phase space, since any initial state that has
the same symmetry as the entire system evolves to other
states that also respect the symmetry of the system. The set
of such symmetric initial states then forms a manifold that is
invariant under the system dynamics. These invariant mani-
folds can also have the property that the dynamics restricted
to the manifold is chaotic, i.e., symmetric initial states can be
attracted to a chaotic set in the invariant manifold. This situ-
ation occurs naturally in the context of systems with spatial
symmetry or in the synchronization of chaotic oscillators
@1,2#.

For example, in the case of synchronization of identical
chaotic oscillators, the set of all synchronized states is an
invariant manifold. Figure 1 is a schematic illustration of two
identical coupled chaotic oscillators.The vectorsū and v̄
represent the states of the two oscillators. Consider the situ-
ation where the dynamics of each oscillator without the cou-
pling is chaotic and has a chaotic attractor. In the figure, the
oscillators are coupled diffusively, i.e., the coupling is given
by the difference between the states of the two oscillators.
Consequently, if the two oscillators are synchronized at some
instant of time, the coupling between them is zero. If the
oscillators are identical, they will remain synchronized for all
later times in the absence of noise or external perturbations,
implying that the set of all synchronized states is an invariant
manifold, thesynchronization manifold.

On the synchronization manifold, the dynamics of the
system are the same as that of a single free-running oscilla-
tor. Therefore, the coupled system has a chaotic attractor for
the dynamics restricted to the synchronization manifold. This

situation is illustrated schematically in Fig. 2.~The attractor
embedded in the manifold will be denoted byA.)

As another example consider the case of time-dependent
Rayleigh-Bénard convection in a cell with a symmetry plane
about the middle of the cell. This is illustrated in Fig. 3
where the symmetry plane of the cell is shown as a dashed
line. In principle, if an initial condition is set up with the
same symmetry as the cell, it will retain that symmetry for
all time. The full dynamics, however, allows asymmetric
motions in addition to the symmetric motions. The set of all
symmetric states thus represents an invariant manifold in the
full state space of the dynamical system~analogous to the
synchronization manifold for the system in Fig. 1!.

Recent work@1–7# has investigated the consequences of
an invariant manifold embedded in the phase space such that
the dimension of the invariant manifold is less than the di-
mension of the phase space and the dynamics restricted to
the invariant manifold has a chaotic attractor. A question of
considerable interest is the stability of the attractor in the
invariant manifold, i.e., the conditions under which the at-
tractorA on the invariant manifold is also an attractor for the
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FIG. 1. Coupled identical chaotic oscillators. The coupling is the

same in both directions.
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dynamics in the entire phase space. For example, if this is the
case in the system of coupled oscillators, the oscillators will
eventually synchronize. If this is the case for the Rayleigh-
Bénard example~Fig. 3!, an initial spatially asymmetric state
can evolve to a spatially symmetric state. A natural question
is what happens to this attractor under perturbations due to
noise. Another is what happens in the presence of small spa-
tial asymmetry in a case like the Rayleigh-Be´nard example,
or in the presence of a small mismatch between the two
oscillators. These questions are of experimental interest in
determining the conditions under which the two oscillators
will synchronize and then stay locked or whether the
Rayleigh-Bènard system evolves toward the symmetric state
and stays there.

Ashwin et al. @2# consider the situation where there exists
a parameter that affects the dynamics transverse to the in-
variant manifold but does not affect the dynamics on the
invariant manifold. They call such a parameter anormal pa-
rameter. In the case of coupled oscillators considered above,
e, the strength of the coupling between the oscillators is a

normal parameter. In Ref.@2# they consider the situation
where e is a normal parameter and there exists a critical
value eb of e, such that fore,eb all invariant sets in the
attractorA are stable with respect to perturbations in a direc-
tion transverse to the invariant manifold, and ase is in-
creased througheb an invariant set embedded in the attractor
A first becomes unstable to perturbations in a transverse di-
rection. In this case, fore,eb , all orbits that start with ini-
tial conditions sufficiently close toA asymptotically ap-
proachA @8#.

Whene slightly exceedseb , most initial conditions close
to A remain close toA and are attracted toA. However, as a
consequence of the invariant set embedded inA that is re-
pelling in the transverse direction, there is also a small set of
points in any neighborhood ofA that move far from the
invariant manifold containingA. The transition ate5eb is
called thebubbling transition@1#.

If the global dynamics of the system are such that these
repelled orbits are attracted to a set off the invariant mani-
fold, then the basin of attraction ofA is riddled @6# andA is
no longer a topological attractor. It is aMilnor attractor; i.e.,
it attracts a set of inital conditions with positive Lebesgue
measure. However, there is no neighborhood of the attractor
A for which all initial conditions are attracted byA. The
basin of A is ‘‘riddled’’ by pieces of the basin~s! of the
attracting set~s! off the invariant manifold in the sense that a
sphere of arbitrarily small radiuse centered about any point
in the basin ofA has a positive fraction of its volume occu-
pied by points in the basin~s! of the other attractor~s!. This
has the disturbing consequence that, if one does an experi-
ment setting an initial condition and observing that it goes to
the riddled basin attractor, repeating this may lead to a dif-
ferent attractor with a finite probability even if the experi-
mental error in setting the initial condition can be made ar-
bitrarily small. The unusual properties of riddled basins have
received much recent attention@5–7#.

On the other hand, if the global dynamics of the system
are bounded and there exist no attractors other thanA, then
an orbit repelled fromA will eventually return to the vicinity
of the invariant manifold, possibly after a transient phase in
which the orbit makes several excursions~bursts! away from
the invaraint manifold. In this case, almost all orbits eventu-
ally end up on the attractorA.

Dynamical systems with invariant manifolds are not ge-
neric. For example, in cases where the invariant manifold is
a consequence of a symmetry in the system, a small asym-
metry or additive noise, both of which will be present in real
systems, will destroy the invariant manifold@9#. Thus, it is of
interest to study the effect of noise and small asymmetry on
the dynamics of systems that would possess invariant mani-
folds if the symmetry was exact and there was no additive
noise. In this paper, we study the effects of a small asymme-
try @10# and additive noise on the bubbling transition at
e5eb .

We consider a dynamical system with a parameterq that
controls the amplitude of the asymmetry or the noise in the
system. Whenq50, the system has an invariant manifold.
As discussed above, whene.eb , there are two cases of
interest:

FIG. 2. A schematic of an invariant manifold with an embedded
attractor. For initial conditions in the invariant manifold, the subse-
quent orbit remains in the manifold and eventually ends up on the
attractor.

FIG. 3. A symmetric Rayleigh-Be´nard cell with symmetric con-
vection rolls.
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~i! There are other attractors not on theq50 invariant
manifold and the attractor on the invariant manifold has a
riddled basin;

~ii ! There are no attractors other than the one in the in-
variant manifold.

In case~i! as e is increased througheb the basin of the
attractor in the invariant manifold becomes riddled when
q50. We find that the presence of small noise or asymmetry
has the following effects in the two cases. In case~i! an orbit
can be attracted to the neighborhood of the attractor that
would exist on the invariant manifold in the absence of noise
or asymmetry. The orbit then behaves chaotically in this
neighborhood in a manner similar to the noiseless symmetric
case. This, however, does not persist forever, and, after some
time, the orbit will leave this neighborhood. The quantity of
interest in this case is the average time the orbit spends near
the ‘‘ghost’’ of the attractor for the noiseless symmetric case.
In case~ii ! an orbit near the ghost attractor~formerly on the
invariant manifold! again leaves its vicinity and goes far
away. In this case, however, there is no other attractor to
capture this orbit. The orbit thus eventually returns to the
ghost attractor and stays in its vicinity before again bursting
away. In both cases, the mechanism by which the orbit
leaves the ghost attractor is the same, and the quantity of
interest is the average time spent there. Thus one of our goals
in this paper is to uncover the scaling of this average time as
a function of the asymmetry amplitude and the noise ampli-
tude when these amplitudes are small ande is neareb .

Our results highlight the issue of the observability of
riddled basins in experiments. Strictly speaking, the riddled
basin attractor on the invariant manifold does not exist when
noise and asymmetry are present. However, experimentally
this may not matter, provided the transient lifetime on the
ghost attractor is much larger than the duration of the experi-
ment. ~This was apparently the case for the experiment in
Ref. @11#.! In order to quantitatively assess if this is the case,
it is crucial to have an estimate of the transient lifetime.

Our results are also relevant in the problem of synchroni-
zation of chaotic oscillators. If there is no noise in the system
and the oscillators are identical, the synchronized state is an
invariant manifold in the phase space of the coupled system.
If this manifold is attracting on average~i.e., all the
Lyapunov exponents for perturbations transverse to the in-
variant manifold are negative!, the coupled system will even-
tually settle in the synchronized state. However, as observed
in the experiments@12,13#, a small noise in the system or a
small mismatch between the oscillators will cause the system
to burst away from the synchronized state even if the syn-
chronized state is attracting on average. Our results give us a
quantitative estimate~for the case of a system near the bub-
bling transition! of the average interburst interval and the
distribution of interburst intervals. This is crucial in order to
estimate the time that the coupled oscillators will stay in
phase.

This paper is organized as follows. In Sec. II we introduce
a two-dimensional~2D! map that we use to study the effects
of noise and asymmetry on the bubbling transition. In Sec.
III we state our results for the effects of noise and asymmetry
on the bubbling transition. In Sec. IV we give a general
formula for the escape time. In Sec. V we derive our results
for the effect of asymmetry. In Sec. VI we derive our results

for the effect of additive noise. In Sec. VII we translate the
results derived for the riddled basin case in Secs. II–VI to
the case where there is only one attractor in the system~i.e.,
the case of intermittent bursting!. Section VIII considers the
case of synchronized oscillators in which the coupling is not
symmetric. In this case, the invariant manifold is not due to
a symmetry and different scaling results are obtained.

II. THE MODEL

The universality of the phenomena addressed in this paper
implies that very general results may be extracted from
simple models that incorporate the essential features respon-
sible for these phenomena. In this spirit we introduce the
following two dimensional map:

xn1152xnmod1,

yn115$11e2r @12cos~2pxn!#%yn1yn
3

1q@d1sin~2pxn1g!1d2nn#, ~1!

wherenn are zero mean, independent, identically distributed
random variables chosen at each iteraten of the map and
have a varianceE@nn

2#51. The caseq50 corresponds to the
symmetric noiseless case. In particular, note that when
q50, the system has the symmetryy→2y. The symmetry
y→2y in ~1! models the spatial symmetry in a situation like
Fig. 3. It is, as discussed subsequently, also appropriate to
coupled oscillators when the coupling is symmetric~as in
Fig. 1!. As a consequence of they→2y symmetry, the
manifold y50 is invariant under the action of the map~1!
when q50. The dynamics on this invariant manifold are
generated by the 2xmod1 map and are independent ofe and
r . Therefore, the parameterse and r are normal parameters
for the system in~1! with q50.

In subsequent sections of this paper we shall separately
consider the effect of asymmetry in the absence of noise,
which corresponds to

qÞ0, d151, d250,

and the effect of noise in the absence of asymmetry, which
corresponds to

qÞ0, d150, d251.

With this convention, the parameterq controls the strength
of the asymmetry in the first case, while in the second case it
controls the strength of the noise.

Note that in~1! the noise occurs only in they component
of the map. In a realistic situation this would not be ex-
pected, and a more isotropic noise model is appropriate. To
achieve this, one could replace the equation forxn in ~1! by

xn115~2xn1 q̄d2 n̄n! mod1, ~2!

where n̄n is randomly chosen at each iterate with variance
E@ n̄n

2#51, q̄ characterizes the strength of the noise in the
x direction, andq̄;q. We show in Sec. VI B, however, that
in the parameter regime we consider suchx noise has no
effect on the scaling results we obtain. Thus, for simplicity,
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we shall henceforth takeq̄50 ~except in Sec. VI B!. In the
remainder of this section we consider the symmetric noise-
less caseq50.

The choice of the sign of the nonlinear term,1yn
3 in ~1!,

leads to orbits that asymptote toy56`. In what follows we
regarduyu5` as an attractor. As shown below, whenq50
and eb,e, the basin of they50 attractor is riddled by the
basin of theuyu5` attractor. The case of a confining nonlin-
earity,2yn

3 , is considered in Sec. VII.
For definiteness, throughout most of this paper, we con-

sider the bubbling transition for the case of riddled basins.
We emphasize that, as discussed in Sec. I, all our results
carry over directly to the case when the global dynamics is
such that the only attractor is on the invariant manifold
(y50) and asymmetry or noise then induces intermittent
bursting~see Sec. VII!.

Consider the caseq50 ~no asymmetry or noise!. If we
are close to the invariant manifoldy50, we can neglect the
yn
3 nonlinearity in ~1!. With this approximation, an orbit is
given by

xn52nx0 ,

yn5l~2n21x0!l~2n22x0!•••l~x0!y0 , ~3!

where

l~x!5$11e2r @12cos~2px!#%, ~4!

and we have used the notation 2nx to denote 2nxmod1. If
e,0, ul(x)u<12ueu for all xP@0,1). Therefore,

lim
n→`

ul~2n21x0!l~2n22x0!•••l~x0!u< lim
n→`

~12ueu!n50.

~5!

This implies that for a sufficiently smally0, an orbit starting
at (x0 ,y0) is attracted to the invariant manifoldy50 for all
x0. Therefore, the sety50 is an attractor for the dynamical
system in~1! whene,0.

Again considering the noiseless symmetric case (q50), if
e.0, thenl(0)511e.1. Therefore, an orbit with initial
conditions (0,y0Þ0) is repelled by the fixed point at (0,0).
Since theyn

3 nonlinearity is also repelling~i.e., it does not
cause the orbit to be bounded!, an orbit starting at (0,y0) is
repelled toy56`. Thus, there are points arbitrarily close to
the invariant manifold that are repelled to6`. This implies
that the invariant manifold is no longer a topological attrac-
tor. However, a typical orbit of the 2xmod1 map is distrib-
uted uniformly in@0,1#, and for 0,e ande not too large, the
invariant manifold (y50) is still attracting on average, i.e.,

lim
n→`

logul~2n21x0!l~2n22x0!•••l~x0!u1/n

5E logul~x!udx,0, ~6!

for a typical initial x0P@0,1). Therefore, for a typicalx0
P@0,1) and sufficiently smally0, we haveyn→0. Here by
typical we mean that the set ofx0 for which ~6! is not true
has zero Lebesgue measure~e.g., the preimages ofx50 are
part of the nontypical set!. The invariant manifold is there-

fore a Milnor attractor and a bubbling transition occurs at
e5eb50. In this case the basin of the attractor ony50 is
riddled by the basin of the attractor atuyu5`. That is, every
ball centered on an initial condition (x0 ,y0) which generates
an orbit going to they50 attractor has pieces of the
uyu5` basin within it, and this is true no matter how small
the radius of the ball is. Figure 4 shows a numerically gen-
erated picture of the basin of they50 attractor basin~blank!
and the uyu5` basin ~black! for the system in~1! with
q50, e50.2, andr50.8.

As discussed in@1,2# the bubbling transition occurs at a
parameter valuee5eb if as e is increased througheb an
invariant set embedded in the chaotic attractor first becomes
unstable to perturbations transverse to the invariant mani-
fold. For our example, Eq.~1!, the first invariant set to be-
come transversely unstable is the period one orbit,x50,
y50 and this occurs ate50. Thus the bubbling transition is
mediated by this particular orbit witheb50. More generally,
the authors of@14# have shown that, except in exceptional
situations, the invariant set whose stability mediates the tran-
sition is a periodic orbit, and the orbit is usually of low
period@15#. It can be shown that the results are independent
of the period of the orbit that mediates the transition, so that
no generality is lost by taking the period to be one in our
numerical experiments or in our subsequent analysis.

Because of theyn
3 nonlinearity, the system in~1! has the

property that for any givene, q, and d.0, there exists a
smallest thresholdymax such that

yn11

yn
.~11d!, ~7!

independent ofxn if uynu.ymax. Therefore, every orbit that
ends up outside the banduyu<ymax is attracted toy56`.
As we shall see later, ifqÞ0 ande.0, there is no attractor
near the invariant manifold and all orbits are attracted to
6`. We define the escape time as the average time that a
typical orbit takes to leave a neighborhood of the invariant

FIG. 4. The basin of attraction of theuyu5` attractor for the
system in~1! with q50. We havee50.2. The figure is generated
with a resolution of approximately 1/5000 in thex direction so that
structures whose widths are narrower than 1/5000 do not show up.
Although the white basin looks solid, it is actually riddled by thin
‘‘tongues’’ of the black basin that emerge from the preimages of
x50 on they50 line.
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manifold and never return. For our simulations we use the
neighborhooduyu,ymax to calculate the escape times~de-
fined more precisely below!.

To close this section we comment on the relevance
to experiments of our hypothesis that there is a symmetry
with respect to the invariant manifold. Various physical
cases where a symmetry induces an invariant manifold can
be envisioned. For example, Fig. 3 depicts a situation of
Rayleigh-Bénard convection in a spatially symmetric con-
tainer, and Eqs.~1! are expected to be a valid model of the
qualitative behavior of such a system if it undergoes a bub-
bling transition. A second example, depicted in Fig. 1, is the
system in which occurs symmetrically coupled identical cha-
otic oscillators. In the case with two oscillators~see Fig. 1!
we have

dū

dt
5F̄~ ū!1e f̄ ~ ū2 v̄ !,

dv̄
dt

5F̄~ v̄ !1e f̄ ~ v̄2ū!,

wheree is a coupling strength andf̄ (0)50. This system is
symmetric to the interchange ofū andv̄ and we again expect
Eq. ~1! to be a good model of what happens when asymme-
try and/or noise is introduced. Herex and y of ~1! can be
identified with (ū1 v̄)/2 and ū2 v̄, and the invariant mani-
fold is the synchronized stateū5 v̄.

Another, quite different situation occurs when the two
oscillators are not coupled symmetrically~see Fig. 5!. For
example, Gauthier and Bienfang@12# experimentally inves-
tigate a case of one-way coupling of two oscillators,

dū

dt
5F̄~ ū!,

dv̄
dt

5F̄~ v̄ !1e f̄ ~ v̄2ū!.

Again, the synchronized stateū5 v̄ is an invariant manifold.
This system, however, is asymmetric in the sense that it is
not invariant to interchange of the variableū and v̄. As a
consequence, we do not expect Eqs.~1! to be the proper
generic model for this system. In particular, the lowest order
nonlinearity to be expected isy2 rather thany3.

Our use ofy3 in ~1! arises from the assumption that the
invariant manifold is accompanied by a symmetry, which
requires that the model be invariant under the transformation
y→2y. This invariance rules out ay2 nonlinearity and the
lowest order nonlinearity that is admissible isy3. For the
case of one-way coupling, due to the absence of the
y→2y type symmetry, the lowest order nonlinearity will be
y2 generically.

In most of this paper~Secs. II–VII!, we only consider the
case of symmetry about the invariant manifold, for which
Eqs.~1! are a valid model. The case where they3 nonlinear-
ity is replaced by ay2 nonlinearity~appropriate, for example,
to synchronization by one-way coupling! yields results that
differ in essential ways from they3 nonlinearity case, and is
discussed in Sec. VIII.

III. RESULTS

Let X denote the invariant manifold that the system pos-
sesses when there is no asymmetry or noise. We will usee to
denote the transverse Lyapunov exponent for the periodic
orbit that first becomes unstable in the transverse direction.
In general, the largest Lyapunov exponent will not be equal
to the bifurcation parameter of the system. However, they
will be related by a smooth change of variables if the bifur-
cation parameter is also a normal parameter. Therefore, we
will henceforth usee to denote both the bifurcation param-
eter for the system and the largest Lyapunov exponent. This
is consistent for the system in~1! neare50. With this con-
vention, we will have the bubbling transition ate50.

We will usehi to denote the largest Lyapunov exponent
for the dynamics on the invariant manifold of the periodic
orbit that mediates the bubbling transition. For the system in
~1!, the dynamics on the invariant manifold are governed by
the 2xmod1 map, and consequently,hi5 log2. The param-
eterq controls the amplitude of the asymmetry or the noise
in the system.

As we discuss in Sec. I, our goal is to investigate the
effect of adding asymmetry and noise to a system that would
otherwise have an invariant manifold. In the presence of
asymmetry or noise, the invariant manifold is destroyed.
However, ife,0 and the amplitude of the asymmetry or the
noise is sufficiently small, the attractor that exists on the
manifoldX for the noiseless symmetric case is replaced by
an attractor that is restricted to a small neighborhood ofX. In
this case, the quantity of interest isD, the maximum devia-
tion of the attractor from the manifoldX. If coupled chaotic
oscillators are operating in this parameter regime, the exist-
ence of such an attractor implies that the oscillators will
eventually lock in the sense that after some time, the magni-
tude of the difference between the states of the oscillators
due to noise or mismatch will not exceedD. ThusD repre-
sents the maximum deviation from synchrony.

If e,0 but the asymmetry or noise amplitude is suffi-
ciently large or if e.0 and we have some asymmetry or
noise in the system, every orbit that approaches the former
invariant manifold will spend some length of time in its vi-
cinity before it bursts away. The quantity of interest ist, the
average time spent in the vicinity of the invariant manifold.

We analyze the behavior of the model system in~1! in
Secs. IV–VI, and we obtain results forD andt in the vari-

FIG. 5. Coupled identical chaotic oscillators. The coupling is
one way.

1350 54VENKATARAMANI, HUNT, AND OTT



ous regions of the parameter space (e,q). We expect that
these results are universal for a class of systems that display
a bubbling transition. In particular, they apply to the model
in Eqs. ~1!. These results are of interest in experiments and
we summarize them in the remainder of this section. The
results in Sec. III A are for the case of asymmetry~e.g., Eq.
~1! with d151, d250), while the results in Sec. III B are for
the case of noise@e.g., Eq.~1! with d150, d251].

A. Results for asymmetry

Figure 6 is a summary of the behavior of the model sys-
tem in ~1! for the case of asymmetry (d151, d250) in
various regions in (e,q) parameter space. There is a critical
curvee5e* (q);2q2/3, such that the system has an attrac-
tor in the vicinity of X for e,e* (q). In this region of pa-
rameter space, if the initial condition is close toy50, yn for
the model in~1! eventually enters the regionuyu<D and
stays there. Ife.e* , almost every orbit that approaches
y50 eventually leaves the vicinity ofy50 after which it
escapes rapidly toy56`. The average time spent in the
vicinity of the invariant manifold is given byt which has
different scaling behaviors in the different regions of param-
eter space. We discuss the results for systems with asymme-
try in the various regions of the parameter space of Fig. 6 in
the remainder of this section.

~1! For e,0 andqÞ0 sufficiently small, the system will
have an attractorB in the vicinity of the ‘‘ghost’’ of the
invariant manifold~the invariant manifold when there is no
asymmetry or noise in the system!. Figure 7 shows an attrac-
tor in the vicinity of y50 for the system in Eq.~1!
(d151, d250). The parameters have valuese520.1,
q50.01.

The attractorB is confined to a layer of widthD about
y50 whereD scales@16# as

D;q/ueu. ~8!

This is confirmed for the system~1! with d151 andd250 in
Figs. 8 and 9. Figure 8 shows a plot ofD as a function of
q for with e520.1 and Fig. 9 shows a plot ofD as a func-
tion of 1/ueu with q50.01. For the data in Figs. 8 and 9, we
determineD by following a typical orbit for 5 million itera-
tions and taking the largest value ofuynu. On both plots a
fitted straight line that goes through the origin@prediction of
Eq. ~8!# is shown for comparison.

~2! For anyqÞ0, there existse* (q),0, wheree* (q) is
a critical value of the parametere such that, ase increases
throughe* (q), the attractor nearX is destroyed by a crisis.
For the system in~1! with the cubic nonlinearity, we have

e* ~q!;2uqu2/3. ~9!

FIG. 6. A schematic representation of the results for the model
with asymmetry. The results for the escape times in the various
parameter regimes are shown.

FIG. 7. An attractor for the system in~1! with d151, d250.
The parameters have valuese520.1 andq50.01.

FIG. 8. The width of the attractor as a function of the asymme-
try parameter. The dashed line is a fit.

FIG. 9. The width of the attractor as a function of 1/ueu. The
dashed line is a straight line fit.
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Figure 10 shows the attractorB and the basins of attraction
of the attractor aty56` ~the black regions of Fig. 10! for
the system in~1! with d151, d250 ande close to, but less
than e* . As e→e* , a saddle periodic orbit that lies on the
boundary of thee,e* attractor merges with a repelling pe-
riodic orbit on the basin boundary. This phenomenon has
been studied more generally in@17#. As e increases through
e* , the attractorB is destroyed by this boundary crisis and is
replaced by a chaotic transient. In this case, almost all the
orbits eventually end up aty56`.

~3! For e.e* andqÞ0, every orbit~except for a set of
Lebesgue measure zero! eventually leaves any given open
neighborhoodO of the ghost manifoldX. Figure 11 is a plot
of the logarithm ofN(n), the number of orbits that remain in
uyu,1.5 aftern steps for the map in~1!. This plot is obtained
by randomly sprinkling 10 000 initial conditions on the line
y50 and following the orbits generated by these initial con-
ditions. From the plot, we see that

N~n!;N0e
2n/t, ~10!

after an initial transient. We will call the timet the escape
time. t is of the order of the average length of the chaotic
transient that follows the ‘‘ghost’’ of the attractorB.

~4! For ueu!q2/3, we obtain

logt;
hi

q2/3
. ~11!

This result is also obtained in@18# for the special case
e50. Figure 12 is a plot of logt as a function of 1/q2/3 for
d151, d250 ande50.01. The data lie along a straight line
which is in agreement with the predicted scaling.

~5! For e.0 ande@q2/3, we have@19#

logt.
hi

ueu
logS e3/2

q D . ~12!

Figure 13 shows a plot of logt as a function of logq for the
model in~1! with d151, d250 ande50.2. The dashed line
has the theoretically predicted slope of2hi /e and the data
agree well with the predicted scaling.

~6! For e close to, but larger thane* , the escape time is
given by

FIG. 10. The attractor and the basin boundaries for the system in
~1! before the crisis. The parameters ared151, d250, e520.1,
andq50.03. The figure also shows the three period one points with
x50. As e is increased, the saddle periodic point on the boundary
of the attractor will merge with the upper unstable periodic point on
the basin boundary.

FIG. 11. A plot of the number of orbits that are left in the region
uyu,1.5 as a function of the number of iterations of the map.

FIG. 12. This plot shows the escape time as a function of
q22/3 whenueu!q2/3. The parametere is 0.01. The dashed line is a
fit.

FIG. 13. This plot shows the escape time as a function of the
asymmetry amplitudeq whene/q@1. The parametere is 0.2 and
both axes are on log scales. The dashed line has a slope equal to
2hi /e, which is the theoretical prediction.
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logt;
hiue* u21/2

ue2e* u1/2
. ~13!

The dependence logt;ue2e* u21/2 for a constantq can be
viewed as a consequence of the result derived in@17# where
the authors study the chaotic transient time due to an attrac-
tor that is destroyed by a crisis that is mediated by the coa-
lescence of a saddle periodic orbit on the attractor with a
repellor periodic orbit on the basin boundary.~This is the
relevant type of crisis in our case@see Fig. 10#, and is called
an unstable-unstable pair crisis@17#!. Equation~13! shows
that as we approach the critical linee5e* at constantq by
decreasinge, we have that logt diverges asue2e* u21/2.
Similarly, as we approach the critical line at constante by
decreasing q, We have that logt diverges as
uq2q* (e)u21/2 whereq* (e);(2e)3/2. Figure 14 shows a
plot of logt as a function of 1/ue2e* u1/2 for a constant value
of q.

The scaling results in items 1–6 of this section are sum-
marized in Fig. 6. Note that the results~11! and~12! agree in
the crossover regime~shown hatched in the figure!. Also
note that~13! and~12! become the same in the region to the
right of the dashed line which is placed ate5(3/4)e* @the
factor 3/4 is somewhat arbitrary and can be replaced by any
positive numbera,1 such that 12a;O(1)].

B. Results for noise

Figure 15 is a summary of the behavior of the model
system in~1! for the case of noise (d150, d251) in various
regions in (e,q) parameter space. In the region
e,e** (q);2q the behavior of the system depends on the
exact details of the noise distribution. We refer to this region
as the non-universal regime. Ine.e** on the other hand,
results depending only on the noise varianceq and otherwise
independent of the noise distribution can be obtained. If
e.e** , almost every orbit that approachesy50 eventually
leaves the vicinity ofy50 after which it escapes rapidly to
y56`. The average time spent in the vicinity of the invari-
ant manifold is given byt which again has different scaling
behaviors in the different regions of parameter space. We
discuss these results in the remainder of this section.

~1! For ueu!q, we have the result

logt;
hi

q
. ~14!

Figure 16 is a plot of the logarithm of the escape time as a
function of 1/q for the system in~1! with d150, d251 and
e50.01. The dashed line is a fit and the data lie along this
line in agreement with the predicted scaling.

~2! For e positive ande@q, we obtain

logt.
hi

e
log~e/q!. ~15!

Figure 17 is a plot of logt as a function of logq with
e50.2. The dashed line corresponds to the theoretical slope
of 2hi /e and the data agree with the prediction.

~3! The results in items 1 and 2 above are universal in the
sense that they depend only on the noise varianceq2 and not
on the form of the noise probability distribution function.
Our calculations~not given here! lead us to conjecture that
for e!2q this universality does not hold, and, in particular
the form of the low probability tail of the distribution is
important. Thus, qualitatively different scaling may result,
for example, for Gaussian and bounded noise distributions.

The scaling results in items 1 and 2 of this section for
systems with noise are summarized in Fig. 15.

FIG. 14. This plot shows the scaling of the escape time as a
function of the largest transverse Lyapunov exponente when e is
close to its critical valuee* . The dashed line is a fit.

FIG. 15. A schematic representation of the results for the model
with additive noise. The results for the escape times in the various
parameter regimes are shown.

FIG. 16. This plot shows the escape time as a function of 1/q
where q is the noise amplitude ande/q!1. The parametere is
0.01. The dashed line is a fit.
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When noise and asymmetry are both present, the escape
time may be estimated as

t5min~ta ,tn!, ~16!

whereta andtn are the escape times due to the asymmetry
and the noise respectively. We will derive and discuss the
results stated in Secs. III A and III B in Secs. IV–VI.

It is noteworthy that our scalings and numerical results
indicate remarkably long escape times even whene and q
are not tiny@e.g., in Fig. 14 the escape timet ranges from
105 to 106 for u(e2e* )/e* u;0.3].

IV. ESCAPE TIME

We will now obtain a formula for the escape time for the
map in ~1!. If we are close to the bubbling transition, only
points whosex coordinates are very close to 0~the fixed
point of the 2xmod1 map that mediates the bubbling transi-
tion! are repelled away fromX, the ghost of the invariant
manifold (X is the sety50,0<x<1). All other points ex-
perience average attraction towardX, until they land close to
x50. In particular, there will exist an open setU,X con-
taining 0 such that ifx is outsideU, an orbit starting at
(x,y) is attracted towards the ghost of the invariant manifold
in the next step and an orbit starting at (x,y) with xPU is
repelled away from the invariant manifold in the next step.
Therefore, for an orbit starting at (x,0) to get toy5ymax
without returning to the vicinity ofX, we need that
@x,x1 ,x2 , . . . ,xl #PU, wherel is the number of steps it takes
to get toymax.

Since the dynamical system~1! is a continuous map on
the phase space, the number of steps required to get to
ymax is approximately the same as the number of steps that
an orbit starting at (0,0) takes to get toymax. Let n̄ be the
number of steps that an orbit starting at (0,0) takes to get to
ymax. Then,l'n̄.

If we want @x,x1 ,x2 , . . . ,xl #PU, thenx should lie in an
intervalO whose widthW0 is given by

W05exp~2hin̄!W~U!, ~17!

whereW(U) is the width ofU. The escape time is the ex-
pected time for a typical orbit of the 2xmod1 map to end up
in O. Consequently,

t;1/W0 , ~18!

and this yields

t;@W~U!#21exp~ n̄hi!. ~19!

It can be shown that then̄ dependence ofW(U) is very much
weaker than the exponential dependence, exp(n̄hi) ~e.g., the
calculation in Sec. VI B impliesW(U);O(1) when
(e2e* )/ue* u is not very small!. Consequently, forn̄@1 we
have

logt;n̄hi . ~20!

V. ASYMMETRY

A. Attractor for e<e*

For the 2D map in Eq.~1! we can demonstrate the results
in item 1 of Sec. III A, i.e., we can show that there exists an
attractorB in the vicinity of the ghost of the invariant mani-
fold (y50) and this attractor is confined to a layer of width
D which is given by Eq.~8!. From Eq.~1!, we have

uyn11u5ul~xn!yn1qsin~2pxn1g!1yn
3u

<ul~xn!uuynu1q1uynu3, ~21!

wherel(x) is given by Eq.~4!. We are considering the case
e,0. Consequently,ul(x)u<12ueu. Also, we assume that
uynu3<q/2. This assumption is verified later. With this as-
sumption, foruynu<3q/(2ueu), we have

uyn11u<3q/~2ueu!. ~22!

This implies every orbit for the system in~1! that starts off
near the invariant manifold is confined to a layer of width
D'3q/(2ueu) @this is Eq. ~8!#. Also, because the set
@0,1#3@2D,D# is compact, every infinite sequence of
points has at least one limit point. This implies the existence
of an attractorB, for the dynamical system in~1!, within this
set.

In order that our assumption thatyn
3<q/2 hold, since

uyu,D<3q/2ueu, we require (q/2)2,ue/3u3. This is satisfied
whene,e*523(q/2)2/3, which is also the exact result for
e* in ~26!. Consequently, we have an attractor fore,e* and
it is confined to a band of widthD;q/ueu.

B. Escape times

We consider the 2D map in Eq.~1! with d151 and
d250. The periodic orbit of the 2xmod1 map that is the
most unstable in the transverse direction is the fixed point at
x50. In the vicinity ofx50, the equation foryn reduces to

yn115yn
31~11e!yn1q0 , ~23!

whereq05qsin(g).

FIG. 17. This plot shows the escape time as a function of the
noise amplitudeq whene/q@1. The parametere is 0.2. Both the
axes are on log scales. The dashed line has the theoretically pre-
dicted slope2hi /e.
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If yp is a fixed point of Eq.~23!, then the point (0,yp) is
a fixed point~periodic point with period 1!, of the map in~1!.
The fixed points of Eq.~23! are given by the solutions of

yp
31eyp1q050. ~24!

For the cubic equation in~24! to have three real roots, we
need that

ymxymn,0, ~25!

whereymx andymn are the local maximum and minimum for
the cubic polynomial in~24!. This yields the condition

e,e*523Uq02 U2/3, ~26!

which is the result in item 2 of Sec. III A.
If e,e* , we have three real roots for Eq.~24!. Therefore,

we have three fixed points. Two of these fixed points are
unstable but the third fixed point is stable. Therefore, an orbit
starting at (0,0) will not escape toy5`. It will instead end
up at the fixed point that is stable. By the argument in Sec.
IV, this implies that none of the orbits that start off near the
manifold y50 make it out toy56`. They instead end up
on an attractorB in the vicinity of y50. Further, this attrac-
tor is a topolgical attractor and the stable fixed point of Eq.
~23! is embedded in it. The two unstable fixed points of Eq.
~23! lie on the basin boundary of the attractor aty56`.
This demonstrates the results in item 2 of Sec. III A. This
result is illustrated in Fig. 10. The fixed points in the figure
have been calculated by numerically solving Eq.~24!.

For e.e* , Eq. ~24! has only one real root. The fixed
point corresponding to this root is unstable. Therefore, an
orbit starting at (0,0) will eventually end up aty5`. Con-
sequently, every orbit starting in the vicinity of the invariant
manifold will eventually escape. Ase→e* , the stable fixed
point on the attractorB will merge with the unstable fixed
point on the boundary of the basin of the attractor at
y56` as the two roots of the cubic in~24! merge. This is a
boundary crisis as a periodic point in the attractor merges
with an unstable periodic point on the basin boundary. The
attractorB is therefore destroyed in a crisis and is replaced
by a chaotic transient. We expect that this behavior is generic
in systems with asymmetry near the bubbling transition.

By the argument in Sec. IV, it suffices to consider an orbit
starting at (0,0) to evaluate the escape time fore.e* . Be-
cause of theyn

3 nonlinearity, there exists aymax such that if
uynu.ymax, the orbit rapidly goes to the attractor at6`
independent ofxn . Let n̄ be the number of steps that an orbit
starting at (0,0) takes to get to (0,ymax). If q!1 ande!1,
the number of steps required is large, i.e.,n̄@1. In that case,
we can replace Eq.~23! by the differential equation

dy~n!

dn
5y31ey1q0 . ~27!

We can then evaluaten̄ by

n̄'E
0

ymax dy

y31ey1q0
, ~28!

and the escape time is given by Eq.~20!. Let a(e,q) be a
cutoff such that fory,a(e,q), we can neglect they3 in the
denominator of the integrand. Therefore, we have

a~e,q!5max~e1/2,q0
1/3!. ~29!

Consequently, the number of steps needed to get from
(0,0) to (0,ymax) is given by

n̄'E
0

a~e,q! dy

ey1q0
1E

a~e,q!

ymax dy

y3
. ~30!

This yields

n̄'
log@11a~e,q!e/q0#

e
1

1

2@a~e,q!#2
. ~31!

Using this equation with the results in Eq.~20! and~29!, we
obtain the scaling results in items 4 and 5 of Sec. III A.
Figure 18~a! shows they coordinate of an orbit starting at
(0,0) for e.0. Note that in this case, most of the steps
required to get toy5ymax are in the region where they3

nonlinearity can be neglected. Fore5e* , the cubic in~24!
has a repeated root aty5ue/3u1/2 which is in the range of
integration in ~28!. For e close to but larger thane* , the
cubic in the denominator of the integrand in~28! has a qua-
dratic minimum aty5ue/3u1/2 and most of the steps that an
orbit from (0,0) takes to get to (0,ymax) are in the vicinity of
this point@see Fig. 18~b!#. In this case~31! is not valid and a
separate analysis is required. Neary5ue/3u1/2 we have

y32ueuy1q05~y12ue/3u1/2!~y2ue/3u1/2!2

1~q022ue/3u3/2!. ~32!

FIG. 18. These figures show they coordinates of orbits that
have initial condition (0,0) and escape to infinity.~a! e.0. In this
case, most of the steps needed to get away from the origin are in the
region where they3 term does not exceed theey or theq0 term.~b!
e is close toe* . In this case, most of the steps are in the vicinity of
the ‘‘ghost’’ fixed point atue* /3u1/2. In this case, Eq.~34! is the
appropriate expression forn̄.
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Therefore, we obtain

n̄'E
0

ymax dy

y31ey1q0

'
1

~3ue* u!1/2E0
ymax dy

~y2ue/3u1/2!21ue2e* u
, ~33!

wheree* is given by Eq.~26!. If e is close toe* , so that
ue/3u@ue2e* u andq is small so thatymax@q, we have,

n̄'
p

~3ue* u!1/2ue2e* u1/2
. ~34!

Using Eq.~20! we obtain the result

logt;hiue* u21/2/ue2e* u1/2, ~35!

which is the result Eq.~13! in item 6 of Sec. III A.
A more accurate expression can be obtained by using~19!

to write logt'n̄hi2logW(U) in place of~20!. Although the
term logW(U) is of higher order as compared ton̄hi , its
inclusion may improve the accuracy of the result in some
cases. To estimateW(U) we writel(x) from ~4! as

l~x!511e2~r /2!x21O~x4!.

We note that bothe and2(r /2)x2 have similar effects in
that they causel(x) to deviate from 1. Thus, if (r /2)x2

exceeds@e2e* (q)#, the orbit will return to the vicinity of
the invariant manifold. Hence we have

W~U!;ue2e* ~q!u1/2

and ~35! is replaced by

log@ ue2e* u1/2t#;hiue* u1/2/ue2e* u1/2. ~36!

@If logue2e* u21/2 is small compared to the right-hand side,
then ~36! reduces to~35!. This is valid for the range plotted
in Fig. 17.#

VI. NOISE

A. Escape times

In this section we will calculate the escape time for the
model in~1! with d150 andd251. The escape time is again
given by~20! wheren̄ is the typical number of steps that an
orbit starting at (0,0) takes to get touyu.ymax.

An orbit starting at (0,0) is given byxn50, and

yn115~11e!yn1yn
31qnn . ~37!

If n̄@1, we can replace the difference equation foryn by the
~stochastic! differential equation

dy

dt
5ey1qn~ t !1y3, ~38!

where n(t) is a continuous time noise process with
E@n(t)n(t8)#5d(t2t8).

If we are close to the invariant manifold, we can neglect
the y3 nonlinearity in~38!. Let a(e,q) be a cutoff such that

for y,a(e,q), we can neglect they3 nonlinearity and for
y.a(e,q), the only important term is they3. Then, we have

n̄5n11n2 , ~39!

wheren1 is the typical number of steps needed to get from
(0,0) to „0,a(e,q)… and n2 is the typical number of steps
needed to get from„0,a(e,q)… to (0,ymax). We can evaluate
n2 by

n2'E
a~e,q!

ymax dy

y3
'

1

2@a~e,q!#2
. ~40!

We will now evaluaten1. Fory,a(e,q), Eq.~38! reduces to

dy~ t !

dt
5ey1qn~ t !. ~41!

We can solve this equation to get

y~ t !5qE
0

t

n~ t8!ee~ t2t8!dt8. ~42!

From this, we get

E†@y~ t !#2‡5q2E
0

tE
0

t

E@n~ t8!n~ t9!#ee~ t2t8!ee~ t2t9!dt8dt9.

~43!

Therefore, we obtain

E†@y~ t !#2‡5
q2

2e
~e2et21!. ~44!

If e.0, the variance ofy(t) increases without bound and it
will eventually become greater than@a(e,q)#2 for any
a(e,q). The time taken for the variance to becomea2 is
n1. Therefore,

n15
log$112e@a~e,q!#2/q2%

2e
. ~45!

If e,0, the variance ofy(t) grows till a timet0;1/ueu when
it has a valueq2/2ueu. Now, if q2/2ueu@@a(e,q)#2, n1 is
again given by the expression in~45!.

The cutoff a(e,q) is determined by the following argu-
ment. Assume that we have an ensemble ofN orbits all start-
ing at (0,0). Then, after a timen1, the y coordinates of the
orbits have a distribution with a variance close toa(e,q)2. If
we wait for anotherm!n1 steps, the average drift due to the
ey term in ~38! is

D1'mueua~e,q!. ~46!

The change in the standard deviation of they coordinates of
the orbits in the ensemble due to the noise~denoted byD2)
can be estimated from the linear increase of the variance with
time,

~a1D2!
22a25mq2, ~47!

appropriate to the random walk
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dy

dt
5qn~ t !. ~48!

We therefore obtain

D2'mq2/a~e,q!. ~49!

The average drift due to they3 nonlinearity is

D3'ma~e,q!3. ~50!

The cutoffa(e,q) is determined by requiring that

D3<max~D1 ,D2!. ~51!

From this, we obtain

a~e,q!;max~ ueu1/2,q1/2!. ~52!

Equations~52!, ~45!, ~40!, ~39!, and ~20! together yield the
results in items 1 and 2 of Sec. III B.

B. Noise in thex direction

We consider now the effect of adding noise to the dynam-
ics of x in our model~1!, as in Eq.~2!. Our estimates of the
escape time have been based on the premise that in order to
escape, thex coordinate of the trajectory must stay within a
neighborhoodU of the fixed point at 0 forl'n̄ iterates, and
that to do sox must fall within an interval of length approxi-
matelyW0 given by Eq.~17!. We claim that Eq.~17! con-
tinues to hold as long as the noise strengthq̄ ~which we
assume is of the same order asq) is small compared with the
widthW(U) of U.

The width ofU can be estimated as follows. The neigh-
borhoodU is determined by requiring that ifx0 ,x1 , . . . ,xl
PU, the orbit closely follows an orbit starting at (0,0). For
this to hold overl steps, we need

)
i51

l

l~xi !'@l~0!# l , ~53!

wherel(x) is the transverse expansion factor defined in~4!.
From Eq.~4!, we have

l~x!511e2
r

2
x21O~x4!'l~0!exp~2rx2/2!. ~54!

For q̄!W(U) we can neglect the noise perturbations in Eq.
~2!. In this case,

xi'2ix0 . ~55!

Therefore

)
i51

l

l~xi !'@l~0!# lexpS 2
r

2(i50

l

xi
2D . ~56!

The setU is therefore determined by requiring that,

(
i50

l

xi
2'4xl

2/3;O~1!. ~57!

Consequently, we have

W~U!;O~1!. ~58!

For q̄→0, we have,

q̄!W~U!. ~59!

Based on our claim above that Eq.~17! is valid when
q̄!W(U), the noise in thex direction does not affect the
scaling results for the escape time in Sec. III B. We now
verify this claim.

Let an orbit starting at (x0,0) escape without returning to
the vicinity of y50. Then,x0 ,x1 , . . . ,xl lie in U. Assume
that the noise perturbationsq̄n̄0 ,q̄n̄1 , . . . ,q̄n̄l21 have been
chosen. Then sincexlPU, its preimagexl21 must lie in a set
Ul21 of half the width of U; the location ofUl21 is not
centered at 0, but is shifted by half the noise perturbation
q̄ n̄l21. Since the size of this translation is of orderq̄, it is
small compared withW(U), and thusUl21 is insideU. Like-
wise xl22 must lie in a setUl22 of width half that ofUl21,
andUl22 is contained inU, and so on. We conclude thatx0
must lie in a setU0 of widthW0, whereW0 is given by Eq.
~17! with hi5 log2.

By this argument, we expect that the results we derive
using the map in~1!, which does not have noise in thex
direction, are also valid for more realistic models which have
a more isotropic noise. We also note that this argument gen-
eralizes beyond the 2x mod1 map.

VII. INTERMITTENT BURSTING

As we discuss in Sec. I, for a system that displays the
bubbling transition, there are two cases of interest. In the first
case, there exist attractors in the phase space off the invariant
manifold. This situation leads to the occurrence of riddled
basins and it has been considered in Secs. III–VI. In the
other case, the symmetric noiseless system has no attractors
other than the one in the invariant manifold. In this situation,
a small noise or asymmetry will cause the system to burst
away from the invariant manifold intermittently. The mecha-
nism of bursting is the same as the mechanism for the escape
of orbits in the first case. In this situation, however, almost
every orbit eventually returns to the vicinity of the symmet-
ric noiseless invariant manifold because there are no attrac-
tors off the invariant manifold. This orbit will then spend a
length of time in the vicinity of the invariant manifold before
it again bursts away.

The transition to bursting behavior ase is increased
throughe* can be of the following two types:

~i! As e is increased throughe* , the bursts appear with an
amplitude that increases continuously fromD, the width of
the attractor fore,e* . We will call this type of bifurcation
a soft transition.

~ii ! As e is increased throughe* , the bursts appear with a
large amplitude. The maximum deviation from the invariant
manifold changes discontinuously fromO(D) for e,e* to
O(1) for e.e* . We will call this type of bifurcation ahard
transition.

The map in~1! has attractors at6` that are offy50, the
invariant manifold for the symmetric noiseless system. We
can modify the map in~1! in two ways to remove these
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attractors. One way is to replace the1yn
3 nonlinearity that

drives orbits away fromy50 by the confining2yn
3 nonlin-

earity. In this case, we have the dynamical system

xn1152xn mod1,

yn115$11e2r @12cos~2pxn!#%yn1qsin~2pxn1g!2yn
3 .

~60!

Figure 19 is a typical time series ofyn generated by the
model in ~60! with e2e* small and positive. The system
spends most of the time in the vicinity of the invariant mani-
fold ~the laminar phases! but these periods are interrupted by
short bursts where the system leaves the vicinity of the in-
variant manifold.

The2yn
3 nonlinearity in~60! ensures that, for some range

of parameters, orbits starting neary50 are bounded. In this
parameter range, every orbit is bounded to a setuyu<ymax,
where, from~60! with x50, ymax satisfies

ymax5~11e!ymax1q02ymax
3 . ~61!

Every burst has a height less than or equal toymax and
ymax is a continuous function ofe. Therefore, the transiton at
e5e* for the map in~60! is a soft transition.

We can also remove the attractors aty56` for the map
in ~1! if we retain the1yn

3 nonlinearity but we modify the
map in the region far fromy50 @i.e., uyu;O(1)] in such a
way that the orbit remains bounded. In this case, for
e.e* , an orbit that leaves the vicinity of the former noise-
less symmetric invariant manifold is pushed further away by
the y3 nonlinearity. However, when it gets touyu;O(1) it
can go no further. In this situation, ase is increased through
e* , the bursts appear with a large@i.e.,O(1)] amplitude; that
is, there is a hard transition.

We will define the laminar phases to be the set of time
indicesn such thatuynu<y0, for some chosen thresholdy0
wherey0 is small compared to the maximum burst size. In
the context of synchronized oscillators,y0 is the maximum
deviation from synchronization that is acceptable. The
mechanism for this bursting is the same as the mechanism
for the escape of orbits in the riddled basin case. Conse-
quently, a laminar phase is analogous to the chaotic transient

in the vicinity of the ghost attractor that was discussed in
Secs. III–VI. Therefore, from the results of the earlier sec-
tions, the duration of the laminar phases is exponentially
distributed. The probability densityP(t), that a laminar
phase has a lengtht is given by

P~ t !;e2t/t, ~62!

wheret is the average interburst interval.
All these bursts occur when thex coordinates of the orbit

are near those of the periodic orbit that mediates the bub-
bling transition. Letn̄ denote the typical number of steps that
an orbit starting at (0,0) takes to get to (0,y0). Then,

n̄'E
0

y0 dy

q01ey1hy3
, ~63!

whereh51 for the hard transition andh521 for the soft
transition. By our earlier arguments,t, the average length of
the laminar phase scales according to Eq.~20!.

VIII. SYNCHRONIZED OSCILLATORS
WITH ASYMMETRIC COUPLING

As discussed at the end of Sec. II, a situation of experi-
mental interest is the synchronization of electrical oscillators.
This is typically done by making the oscillators nearly iden-
tical and electrically coupling them together. This coupling
may or may not be symmetric. In the case of symmetric
coupling, our previous considerations of Secs. II–VII apply.
In the case of asymmetric coupling, the basic model Eq.~1!
must be modified. In particular, as discussed in Sec. II, the
lowest order nonlinearity isyn

2 rather thanyn
3 . In this section

we consider the asymmetric coupling case. In the noiseless
case, they-equation of~1! is replaced by

yn115$11e2r @12cos~2pxn!#%yn1yn
21qsin~2pxn1g!.

~64!

The nonlinearity is written as1yn
2 ; changing1yn

2 to 2yn
2 is

equivalent to changing the sign ofq. As we discuss in the
preceding section, we can have both a hard and a soft tran-
sition depending on the various parameters in the system.
For ~64! the transition is hard forq05qsing.0 and soft for
q0,0.

Figure 20 summarizes our results on the effect of asym-
metry for this case. In the soft case,q0,0, we state results
for the attractor widthD in the various regimes. Note the
close qualitative similarity of theq.0 region with Fig. 6 for
the case of symmetric coupling.

As before, the results for the scaling oft are obtained
from ~20!. The scalings forn̄, however, are now modified,
and are obtained from the differential equation approxima-
tion to ~64! nearx50,

dy

dn
5ey1y21q0 . ~65!

From this we obtain

n̄'E
0

D dy

q01ey1y2
. ~66!

FIG. 19. A typical time series ofyn for the system in~60!. The
system spends most of its time in the vicinity of the ‘‘ghost’’ mani-
fold (y50) but it bursts away intermittently.
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Approximating this integral in the relevant parameter ranges
and using~20!, we obtain the results fort in Fig. 20. To
obtain the results forD, we note that the furthest extent of
the attractor~when the attractor is limited to the region near
y50) is determined by anx50 fixed point on the outer edge
of the attractor. Settingx50 andyn5yn11 in ~64!, we ob-
tain (D5uynu)

D5U 2e6Ae224q0
2

U, ~67!

with the appropriate choice of the plus or minus sign, which
yields the results forD in Fig. 20. The crisis ate5e* (q),
occurs when two fixed points atx50 merge. Therefore,
@e* (q)#254q0, i.e.,

e* ~q!;q1/2. ~68!

IX. CONCLUSIONS

In this paper we study the effects of a small asymmetry
and additive noise on systems that would have an invariant

manifold if there was no asymmetry or noise. The invariant
manifold is destroyed if we have a small asymmetry or ad-
ditive noise. We derive scaling relations for the average
length of the chaotic transientt, the attractor width, and the
bifurcation parameters at crisis, and we numerically verify
the predicted scalings.

In physical experiments, unavoidable small asymmetry
and noise limit the observability of riddled basins and induce
intermittent bursting. Our results delineate the time scale
over which the noiseless symmetric idealization is relevant
in experiments near the bubbling transition.
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