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Recently, physically important examples of dynamical systems that have a chaotic attractor embedded in an
invariant submanifold have been pointed out, and the unusual dynamical consequences of this situation have
been studied. As a parametenf the system is increased, a periodic orbit embedded in the attractor on the
invariant manifold can become unstable for perturbations transverse to the invariant manifold. This bifurcation
is called thebubbling transition and it can lead to the occurrence of a recently discovered, new kind of basin
of attraction, called aiddled basin In this paper we study the effects of noise and asymmetry on the bubbling
transition. We find that, in the presence of noise or asymmetry, the attractor is replaced either by a chaotic
transient or an intermittently bursting time evolution, and we derive scaling relations, valid near the bubbling
transition, for the characteristic timee., the average chaotic transient lifetime or the average interburst time
interval) as a function of the strength of the asymmetry and the variance of the additive noise. We also present
numerical evidence for the predicted scaling31063-651X96)12508-3

PACS numbd(s): 05.45+b

[. INTRODUCTION situation is illustrated schematically in Fig. @he attractor
embedded in the manifold will be denoted Ay)

Many chaotic dynamical systems of physical interest pos- As another example consider the case of time-dependent
sess symmetries. These systems have invariant manifoldRayleigh-Beard convection in a cell with a symmetry plane
embedded in their phase space, since any initial state that habout the middle of the cell. This is illustrated in Fig. 3
the same symmetry as the entire system evolves to othavhere the symmetry plane of the cell is shown as a dashed
states that also respect the symmetry of the system. The d@e. In principle, if an initial condition is set up with the
of such symmetric initial states then forms a manifold that issame symmetry as the cell, it will retain that symmetry for
invariant under the system dynamics. These invariant manill time. The full dynamics, however, allows asymmetric
folds can also have the property that the dynamics restrictethotions in addition to the symmetric motions. The set of all
to the manifold is chaotic, i.e., symmetric initial states can besymmetric states thus represents an invariant manifold in the
attracted to a chaotic set in the invariant manifold. This situfull state space of the dynamical systéamalogous to the
ation occurs naturally in the context of systems with spatiasynchronization manifold for the system in Fig. 1
symmetry or in the synchronization of chaotic oscillators Recent work{1-7] has investigated the consequences of
[1,2]. an invariant manifold embedded in the phase space such that

For example, in the case of synchronization of identicaithe dimension of the invariant manifold is less than the di-
chaotic oscillators, the set of all synchronized states is amension of the phase space and the dynamics restricted to
invariant manifold. Figure 1 is a schematic illustration of two the invariant manifold has a chaotic attractor. A question of
identical coupled chaotic oscillators.The vectaunsand v considerable interest is the stability of the attractor in the
represent the states of the two oscillators. Consider the situavariant manifold, i.e., the conditions under which the at-
ation where the dynamics of each oscillator without the coutractorA on the invariant manifold is also an attractor for the
pling is chaotic and has a chaotic attractor. In the figure, the
oscillators are coupled diffusively, i.e., the coupling is given

by the difference between the states of the two oscillators. du _ F(@) - F(@ - 0)
Consequently, if the two oscillators are synchronized at some dt —
instant of time, the coupling between them is zero. If the oscillator 1
oscillators are identical, they will remain synchronized for all
later times in the absence of noise or external perturbations,
implying that the set of all synchronized states is an invariant v u
manifold, thesynchronization manifold

On the synchronization manifold, the dynamics of the ds _
system are the same as that of a single free-running oscilla- — =F(?) -ef(u - 7)
tor. Therefore, the coupled system has a chaotic attractor for dt
the dynamics restricted to the synchronization manifold. This oscillator 2

FIG. 1. Coupled identical chaotic oscillators. The coupling is the
*Electronic address: cat@fractal.umd.edu same in both directions.
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normal parameter. In Ref2] they consider the situation
y + where € is a normal parameter and there exists a critical
value €, of €, such that fore<e, all invariant sets in the
attractorA are stable with respect to perturbations in a direc-
tion transverse to the invariant manifold, and ass in-
creased through, an invariant set embedded in the attractor
F Invariant Manifold A first becomes unstable to perturbations in a transverse di-
* rection. In this case, foe<e, all orbits that start with ini-

7 tial conditions sufficiently close tA asymptotically ap-
— proachA [8].

Whene slightly exceeds:,, most initial conditions close

» x to A remain close tA and are attracted tA. However, as a

consequence of the invariant set embedded ithat is re-

pelling in the transverse direction, there is also a small set of

points in any neighborhood oA that move far from the

invariant manifold containingd. The transition ate= ¢, is
/.

attractor

called thebubbling transition[1].
If the global dynamics of the system are such that these
repelled orbits are attracted to a set off the invariant mani-

FIG. 2. A schematic of an invariant manifold with an embeddedfOIdI’ then the balsm_of lattractlon ?f_lssl\;illddled [6] and.A IS
attractor. For initial conditions in the invariant manifold, the subse-"© 'ONgéra topological attractor. It iskaiinor attractor, .e.,

quent orbit remains in the manifold and eventually ends up on thdt attracts a set of inital conditions with positive Lebesgue
attractor. measure. However, there is no neighborhood of the attractor

A for which all initial conditions are attracted bf. The

dynamics in the entire phase space. For example, if this is th@asin of A is “riddled” by pieces of the basifs) of the
case in the system of coupled oscillators, the oscillators wilRttracting set) off the invariant manifold in the sense that a
eventually synchronize. If this is the case for the Rayleigh-sphere of arbitrarily small radius centered about any point
Benard exampléFig. 3), an initial spatially asymmetric state in the basin ofA has a positive fraction of its volume occu-
can evolve to a spatially symmetric state. A natural questiopied by points in the basig of the other attractds). This

is what happens to this attractor under perturbations due thas the disturbing consequence that, if one does an experi-
noise. Another is what happens in the presence of small sparent setting an initial condition and observing that it goes to
tial asymmetry in a case like the Rayleighsided example, the riddled basin attractor, repeating this may lead to a dif-
or in the presence of a small mismatch between the tw@erent attractor with a finite probability even if the experi-
oscillators. These questions are of experimental interest ifental error in setting the initial condition can be made ar-

determining the conditions under which the two oscillatorspitrarily small. The unusual properties of riddled basins have
will synchronize and then stay locked or whether the sceived much recent attentis—7].

Rayleigh-Baard system evolves toward the symmetric state On the other hand, if the global dynamics of the system

andAsrt]ays tr:erle.[z] der the situati here th ist are bounded and there exist no attractors other fhathen
shwin €t al. [ 2] consider the situation where theré exists , , oy repelled fronA will eventually return to the vicinity
a parameter that affects the dynamics transverse to the in- . . . . . .
: ; : of the invariant manifold, possibly after a transient phase in
variant manifold but does not affect the dynamics on the

invariant manifold. They call such a parameteramal pa- which the orbit makes several excursigbsirstg away from

rameter In the case of coupled oscillators considered abovet,he invaraint manifold. In this case, almost all orbits eventu-

e, the strength of the coupling between the oscillators is &Y €nd up on the attractok. ,
Dynamical systems with invariant manifolds are not ge-

neric. For example, in cases where the invariant manifold is
a consequence of a symmetry in the system, a small asym-
metry or additive noise, both of which will be present in real
systems, will destroy the invariant manifdid]. Thus, it is of
interest to study the effect of noise and small asymmetry on
the dynamics of systems that would possess invariant mani-
folds if the symmetry was exact and there was no additive
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i noise. In this paper, we study the effects of a small asymme-
try [10] and additive noise on the bubbling transition at
E=€p.
/ We consider a dynamical system with a parametéhnat
Symmetry Plane controls the amplitude of the asymmetry or the noise in the

system. Whermg=0, the system has an invariant manifold.
FIG. 3. A symmetric Rayleigh-Berd cell with symmetric con- As discussed above, whest>¢€,, there are two cases of
vection rolls. interest:
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(i) There are other attractors not on the=0 invariant  for the effect of additive noise. In Sec. VIl we translate the
manifold and the attractor on the invariant manifold has aresults derived for the riddled basin case in Secs. I[I-VI to

riddled basin; the case where there is only one attractor in the sysgiem
(i) There are no attractors other than the one in the inthe case of intermittent burstingSection VIII considers the
variant manifold. case of synchronized oscillators in which the coupling is not

In case(i) as € is increased througle, the basin of the symmetric. In this case, the invariant manifold is not due to
attractor in the invariant manifold becomes riddled when@ Symmetry and different scaling results are obtained.
g=0. We find that the presence of small noise or asymmetry
has the following effects in the two cases. In céi$en orbit Il. THE MODEL
can be a_ttracted to th‘? ne|ghbprh09d of the attractor 'ghat The universality of the phenomena addressed in this paper
would exist on the invariant manifold in the absence of noisq, .

; . ) plies that very general results may be extracted from
or asymmetry. The orbit then behaves chaotically in thlssimple models that incorporate the essential features respon-

neighborhood in a manner similar to the noiseless symmetrigible for these phenomena. In this spirit we introduce the
case. This, however, does not persist forever, and, after Soni’gllowing two dimensional map:

time, the orbit will leave this neighborhood. The quantity of
interest in this case is the average time the orbit spends near X . . =2x.mod1
the “ghost” of the attractor for the noiseless symmetric case. i " '
In case(ii) an orbit near the ghost attractdormerly on the _ _ _ 3
invariant manifolg again Ieagves its vicinity andy goes far Ynea={1+ e r[1=cos2mxy) [ynt ¥y
away. In this case, however, there is no other attractor to +q[ 8:8IN( 27X+ ¥) + o], (@))
capture this orbit. The orbit thus eventually returns to the
ghost attractor and stays in its vicinity before again burstingvherev, are zero mean, independent, identically distributed
away. In both cases, the mechanism by which the orbitandom variables chosen at each itematef the map and
leaves the ghost attractor is the same, and the quantity ¢fave avariancé[yﬁ]:l. The case =0 corresponds to the
interest is the average time spent there. Thus one of our goaéymmetric noiseless case. In particular, note that when
in this paper is to uncover the scaling of this average time ag=0, the system has the symmeiry> —y. The symmetry
a function of the asymmetry amplitude and the noise ampliy— —y in (1) models the spatial symmetry in a situation like
tude when these amplitudes are small and neare;, . Fig. 3. It is, as discussed subsequently, also appropriate to
Our results highlight the issue of the observability of coupled oscillators when the coupling is symmet@s in
riddled basins in experiments. Strictly speaking, the riddled=ig. 1). As a consequence of thge——y symmetry, the
basin attractor on the invariant manifold does not exist whefnanifold y=0 is invariant under the action of the mép
noise and asymmetry are present. However, experimentallyhen q=0. The dynamics on this invariant manifold are
this may not matter, provided the transient lifetime on thegenerated by thexdnodl map and are independenteofind
ghost attractor is much larger than the duration of the experir | Therefore, the parameteesandr are normal parameters
ment. (This was apparently the case for the experiment irggr the system in(1) with q=0.
Ref.[11].) In order to quantitatively assess if this is the case, | subsequent sections of this paper we shall separately

it is crucial to have an estimate of the transient lifetime.  consider the effect of asymmetry in the absence of noise,
Our results are also relevant in the problem of synchroniywhich corresponds to

zation of chaotic oscillators. If there is no noise in the system
and the oscillators are identical, the synchronized state is an q#0, &,=1, &=0,
invariant manifold in the phase space of the coupled system.
If this manifold is attracting on averagé.e., all the and the effect of noise in the absence of asymmetry, which
Lyapunov exponents for perturbations transverse to the ineorresponds to
variant manifold are negatiyethe coupled system will even-
tually settle in the synchronized state. However, as observed g#0, =0, &6=1.
in the experiment$12,13, a small noise in the system or a
small mismatch between the oscillators will cause the systerfdVith this convention, the parametgrcontrols the strength
to burst away from the synchronized state even if the synOf the asymmetry in the first case, while in the second case it
chronized state is attracting on average. Our results give us@@ntrols the strength of the noise.
guantitative estimatéor the case of a system near the bub-  Note that in(1) the noise occurs only in the component
bling transition of the average interburst interval and the of the map. In a realistic situation this would not be ex-
distribution of interburst intervals. This is crucial in order to pected, and a more isotropic noise model is appropriate. To
estimate the time that the coupled oscillators will stay inachieve this, one could replace the equationxpm (1) by
phase. o

This paper is organized as follows. In Sec. Il we introduce Xnt1=(2Xp+qd, v,) modl, (2
a two-dimensiona{2D) map that we use to study the effects o
of noise and asymmetry on the bubbling transition. In Secwhere v, is randomly chosen at each iterate with variance
[l we state our results for the effects of noise and asymmetry=[ ;f]=1, q characterizes the strength of the noise in the
on the bubbling transition. In Sec. IV we give a generalx direction, andy~q. We show in Sec. VI B, however, that
formula for the escape time. In Sec. V we derive our resultsn the parameter regime we consider suchmoise has no
for the effect of asymmetry. In Sec. VI we derive our resultseffect on the scaling results we obtain. Thus, for simplicity,
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we shall henceforth takg=0 (except in Sec. VI & In the
remainder of this section we consider the symmetric noise-
less case=0.

The choice of the sign of the nonlinear termyﬁ in (1),
leads to orbits that asymptote yo= + 0. In what follows we
regard|y| = as an attractor. As shown below, whgr0
and e,< e, the basin of they=0 attractor is riddled by the
basin of thely| = attractor. The case of a confining nonlin-
earity, —yﬁ, is considered in Sec. VII.

For definiteness, throughout most of this paper, we con-
sider the bubbling transition for the case of riddled basins.
We emphasize that, as discussed in Sec. |, all our results
carry over directly to the case when the global dynamics is —0.4 -0-2 00 0z 0.4
such that the only attractor is on the invariant manifold

(y=0) and asymmetry or noise then induces intermittent g, 4. The basin of attraction of thg|=2 attractor for the
bursting(see Sec. VI\. system in(1) with g=0. We havee=0.2. The figure is generated
Consider the casg=0 (no asymmetry or noigelf we  with a resolution of approximately 1/5000 in thedirection so that
are close to the invariant manifoid=0, we can neglect the structures whose widths are narrower than 1/5000 do not show up.
yﬁ nonlinearity in(1). With this approximation, an orbit is Although the white basin looks solid, it is actually riddled by thin
given by “tongues” of the black basin that emerge from the preimages of
x=0 on they=0 line.

Xn=2"Xg,
I o fore a Milnor attractor and a bubbling transition occurs at
Ya=N(2"" "Xo)A(2"“X0) - - - M(X0) Yo, (3)  e=¢€,=0. In this case the basin of the attractor a0 is
riddled by the basin of the attractor |gf =. That is, every
ball centered on an initial conditiorxq,y,) which generates
N(X)={1+e—r[1—cog2mx)]}, (4) an orbit going to they=0 attractor has pieces of the
ly| = basin within it, and this is true no matter how small
and we have used the notatiofx2to denote 2xmod1. If  the radius of the ball is. Figure 4 shows a numerically gen-

where

€<0, IN(X)|<1—|€| for all xe[0,1). Therefore, erated picture of the basin of tlye=0 attractor basiriblank
and the|y|=« basin (black for the system in(1) with
lim [N (2" XN (277 2Xg) - - - M(Xg)|=< lim (1—|€[)"=0. q=0, €=0.2, andr=0.8.
n—e n—ee As discussed inf1,2] the bubbling transition occurs at a

) parameter value= ¢, if as € is increased througlk, an
invariant set embedded in the chaotic attractor first becomes
unstable to perturbations transverse to the invariant mani-
fold. For our example, Eq.1), the first invariant set to be-
come transversely unstable is the period one orbit0,
y=0 and this occurs a¢=0. Thus the bubbling transition is
mediated by this particular orbit wite,=0. More generally,
the authors of14] have shown that, except in exceptional
situations, the invariant set whose stability mediates the tran-
sition is a periodic orbit, and the orbit is usually of low
period[15]. It can be shown that the results are independent
of the period of the orbit that mediates the transition, so that
no generality is lost by taking the period to be one in our
numerical experiments or in our subsequent analysis.
Because of theyﬁ nonlinearity, the system ifil) has the
property that for any giverg, g, and §>0, there exists a
smallest threshold ., such that

This implies that for a sufficiently smajly, an orbit starting
at (xg,Yo) is attracted to the invariant manifoid=0 for all
Xo- Therefore, the set=0 is an attractor for the dynamical
system in(1) when e<O0.

Again considering the noiseless symmetric cage Q), if
e>0, thenA(0)=1+€e>1. Therefore, an orbit with initial
conditions (Oyy#0) is repelled by the fixed point at (0,0).
Since theyﬁ nonlinearity is also repellingi.e., it does not
cause the orbit to be bounde@n orbit starting at (§y) is
repelled toy= = . Thus, there are points arbitrarily close to
the invariant manifold that are repelled to~. This implies
that the invariant manifold is no longer a topological attrac-
tor. However, a typical orbit of thex@@nodl map is distrib-
uted uniformly in[0,1], and for 0< e ande not too large, the
invariant manifold ¢=0) is still attracting on average, i.e.,

lim log|\ (2"~ xg)A (2"~ 2Xg) - - - N (Xo) | ¥1

nN—e Yn+1

>(1+96), (7)

n
=f log|A (X)|dx<0, (6)
independent ok, if |y,|>Ymax- Therefore, every orbit that
for a typical initial xoe[0,1). Therefore, for a typicak,  ends up outside the bangl|<y,., is attracted toy= *o.
€[0,1) and sufficiently smaly,, we havey,—0. Here by  As we shall see later, ifj+0 ande>0, there is no attractor
typical we mean that the set a&f, for which (6) is not true  near the invariant manifold and all orbits are attracted to
has zero Lebesgue measifeeg., the preimages of=0 are ~ *=«. We define the escape time as the average time that a
part of the nontypical sgtThe invariant manifold is there- typical orbit takes to leave a neighborhood of the invariant
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— Our use ofy® in (1) arises from the assumption that the
di  —, 2 PR . .
— = F(q) invariant manifold is accompanied by a symmetry, which
dt requires that the model be invariant under the transformation
oscillator 1 y— —y. This invariance rules out > nonlinearity and the
lowest order nonlinearity that is admissible yié. For the
case of one-way coupling, due to the absence of the
y— —Yy type symmetry, the lowest order nonlinearity will be
y? generically.
dT . _ - In most of this pape(Secs. [I-VI), we only consider the
dat =F(v) - ¢f(u - v) case of symmetry about the invariant manifold, for which

. Egs.(1) are a valid model. The case where tffenonlinear-
oscillator 2 o 2 co .
ity is replaced by &< nonlinearity(appropriate, for example,
to synchronization by one-way couplingields results that
FIG. 5. Coupled identical chaotic oscillators. The Coupllng is dlffer |n essentlal Ways from th¢3 nonllnearlty case, and |S
one way. discussed in Sec. VIII.

u

manifold and never return. For our simulations we use the
neighborhoody|<ymax to calculate the escape timéde- . RESULTS

fmﬁ_d m(I)re prehqlsely b_e'O)N h | Let X denote the invariant manifold that the system pos-
i o close :[[ |sfsect|(r)]n V\f; c_ornt?e;n;[hon the re evan‘t:esesses when there is no asymmetry or noise. We wilkuse
0 experiments ol our nypotnesis that theré IS a Symmelrye e the transverse Lyapunov exponent for the periodic

with resEect to the mvar!agt manifold. Various pf}yffa‘ orbit that first becomes unstable in the transverse direction.
cases where a symmetry induces an invariant manifold ca general, the largest Lyapunov exponent will not be equal

:;e (len'wﬁl%ned. 4 For exatrnplg, Fig. 3 td?lp'CtS a S|:L!at|on Oto the bifurcation parameter of the system. However, they
¢ aylelg -deéar 1convec lon 1ndat sr;)a 1ally Is_gmmz r:c ?(t)r? will be related by a smooth change of variables if the bifur-
ainer, and Eqs(1) are expected to be a valid model of the 4o harameter is also a normal parameter. Therefore, we

qualitative behavior of such a system if it undergoes a buby iy henceforth usee to denote both the bifurcation param-

bling transition. A second example, depicted In Fig. 1, is theeter for the system and the largest Lyapunov exponent. This
system in which occurs symmetrically coupled identical cha

: . : ) . is consistent for the system (1) neare=0. With this con-
otic oscillators. In the case with two oscillatojsee Fig. 1 vention. we will have ¥he bubbling transition & 0.

we have We will useh to denote the largest Lyapunov exponent
du — o for the dynamics on the invariant manifold of the periodic
FTin (u)+ ef(u—v), orbit that mediates the bubbling transition. For the system in

(1), the dynamics on the invariant manifold are governed by
4o the 2xmod1l map, and consequently,=log2. The param-

1)) - _ . .
—=F(v)+ef(v—U), eterq controls the amplitude of the asymmetry or the noise
dt in the system.

— As we discuss in Sec. |, our goal is to investigate the
wheree is a coupling strength anf(0)=0. This system is  effect of adding asymmetry and noise to a system that would
symmetric to the interchange ofandv and we again expect otherwise have an invariant manifold. In the presence of
Eq. (1) to be a good model of what happens when asymmeasymmetry or noise, the invariant manifold is destroyed.
try and/or noise is introduced. Hereandy of (1) can be  However, ife<0 and the amplitude of the asymmetry or the
identified with U+v)/2 andu—v, and the invariant mani- nojse is sufficiently small, the attractor that exists on the
fold is the synchronized state=v. manifold X for the noiseless symmetric case is replaced by

Another, quite different situation occurs when the two an attractor that is restricted to a small neighborhooX.dh
oscillators are not coupled symmetricallyee Fig. 5. For  this case, the quantity of interest4s the maximum devia-
example, Gauthier and Bienfah@2] experimentally inves- tjon of the attractor from the manifol®. If coupled chaotic

tigate a case of one-way coupling of two oscillators, oscillators are operating in this parameter regime, the exist-
— ence of such an attractor implies that the oscillators will
du — eventually lock in the sense that after some time, the magni-
—=F(u), y 10C , nag
dt tude of the difference between the states of the oscillators

due to noise or mismatch will not exced&d ThusA repre-
sents the maximum deviation from synchrony.

If e<0 but the asymmetry or noise amplitude is suffi-
ciently large or ife>0 and we have some asymmetry or
Again, the synchronized state=v is an invariant manifold. noise in the system, every orbit that approaches the former
This system, however, is asymmetric in the sense that it igavariant manifold will spend some length of time in its vi-
not invariant to interchange of the variableandv. As a  cinity before it bursts away. The quantity of interestrjghe
consequence, we do not expect E¢b. to be the proper average time spent in the vicinity of the invariant manifold.
generic model for this system. In particular, the lowest order We analyze the behavior of the model system(ihin
nonlinearity to be expected ig rather thary®. Secs. IV-VI, and we obtain results fdr and 7 in the vari-

—_ =F_(v_)+ eﬁv_—u_)
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FIG. 6. A schematic representation of the results for the model FIG. 8. The width of the attractor as a function of the asymme-
with asymmetry. The results for the escape times in the variousry parameter. The dashed line is a fit.
parameter regimes are shown.

. (1) For e<0 andg# 0 sufficiently small, the system will
ous regions of the parameter spaegq). We expect that paye an attractoB in the vicinity of the “ghost” of the

these results are universal for a class of systems that displayyariant manifold(the invariant manifold when there is no

a bubbling transition. In particular, they apply to the mOdelasymmetry or noise in the systgnfFigure 7 shows an attrac-
in Egs.(1). These results are of interest in experiments anqOr in the vicinity of y=0 for the system in Eq.(1)
we summarize them in the remainder of this section. The((slzl 5,=0). The parameters have valugs=—0.1

results in Sec. Il A are for the case of asymme@yg., Eq. q=0.01.

(1) with 5, =1, 5,=0), while the results in Sec. lllB are for e atractors3 is confined to a layer of widt about
the case of noisge.g., Eq.(1) with §,=0, §,=1]. y=0 whereA scaleg16] as
A. Results for asymmetry A~qllel. (8
Figure 6 is a summary of the behavior of the model sys-_, . . , . B P
tem in (1) for the case of asymmetrys{=1, 5,=0) in This is confirmed for the systef) with §;=1 andéd,=0 in

various regions in €,q) parameter space. There is a critical 7195 8 and 9. Figure 8 shows a plot &fas a function of

curve e= €* () ~ —g23, such that the system has an attrac-9 for with e=—0.1 and Fig. 9 shows a plot df as a func-

tor in the vicinity of X for e<e*(q). In this region of pa- go? of MeEAl Vt\)’itr:c O|||: O.'Ol' Ftor .thel dalt):?\t ifn FngS'.ﬁ. anqt 9, we
rameter space, if the initial condition is closeyts 0, y,, for e ermlnd k'y 0 r(:Wllng a yplcla orbl o(r) g“ Ihonll era-
the model in(1) eventually enters the regioly|<A and tions and taking the largest value ool n both plots a
stays there. Ife>e*, almost every orbit that approaches fitted straight line that goes through the orijprediction of
< ' ' o - e Eqg. (8)] is shown for comparison.
y=0 eventually leaves the vicinity of=0 after which it - « .
escapes rapidly ty=*+o. The average time spent in the (2.). F?r a?yqaéfo,hthere exIsts (Q)h<(r)1, whereg (q) is
vicinity of the invariant manifold is given by which has ;Cﬂt'cﬁl :/a uetﬁ t 3 patramet;r(s_ucd ttat, a: k;ncreage_s
different scaling behaviors in the different regions of param- rom:r? € (?)’ .ela r%c] ?hr ne bi IS e?_ roygt y ar(]:r|3|s.
eter space. We discuss the results for systems with asymmgpr e system in1) wi € cubic nonfinearity, we have
try in the various regions of the parameter space of Fig. 6 in

* 2/3
. : ; € ~— . 9
the remainder of this section. (@)~—ql ©)
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FIG. 7. An attractor for the system if1) with 6,=1, §,=0.
The parameters have values —0.1 andg=0.01.

FIG. 9. The width of the attractor as a function ofé€l/ The
dashed line is a straight line fit.



1352 VENKATARAMANI, HUNT, AND OTT 54

Escape time 7

-0.4 -0.2 0.0 0.2 0.4
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e I;Igifé)rleo.tr']l'ehecr?st}gac_lt_(r)]reasgrg:ﬁekizzn;;rlldaérle_soforETe soyitem N FiG. 12. This plot shows the escape time as a function of
> P27 e g 2R wh <g?3. Th is 0.01. Th hed line i
andg=0.03. The figure also shows the three period one points witl o when|e|<q e parametee is 0.0 e dashed line is a
x=0. As € is increased, the saddle periodic point on the boundary
of the attractor will merge with the upper unstable periodic point on

: after an initial transient. We will call the time the escape
the basin boundary.

time 7 is of the order of the average length of the chaotic

transient that follows the “ghost” of the attractds.
Figure 10 shows the attractét and the basins of attraction  (4) For|e|<qg?®, we obtain

of the attractor ayy= =0 (the black regions of Fig. 2Cfor

the system in(1) with 6,=1, 5,=0 ande close to, but less g hy 11)
than e*. As e—€*, a saddle periodic orbit that lies on the 097~ 2

boundary of thee<e* attractor merges with a repelling pe-

riodic orbit on the basin boundary. This phenomenon hadhis result is also obtained 18] for the special case
been studied more generally [ih7]. As € increases through €=0. Figure 12 is a plot of logas a function of 1" for
€*, the attractoi3 is destroyed by this boundary crisis and is 9;=1, 6,=0 ande=0.01. The data lie along a straight line
replaced by a chaotic transient. In this case, almost all thevhich is in agreement with the predicted scaling.

orbits eventually end up at=+ o, (5) For e>0 ande>q?® we have[19]

(3) For e>€* andq+0, every orbit(except for a set of
Lebesgue measure zereventually leaves any given open
neighborhood? of the ghost manifolX. Figure 11 is a plot
of the logarithm ofN(n), the number of orbits that remain in )
ly|< 1.5 aftern steps for the map ift). This plot is obtained ~Figure 13 shows a plot of lagas a function of log for the
by randomly sprinkling 10 000 initial conditions on the line model in(1) with 6,=1, 5,=0 ande=0.2. The dashed line
y=0 and following the orbits generated by these initial con-nas the theoretically predicted slope oh;/e and the data

e hHI 63/2

ditions. From the plot, we see that agree well with the predicted scaling. o
(6) For € close to, but larger thag*, the escape time is
given by
N(n)~Ngye "7, (10)
T T
¥ T T *
~ 10000F XK
R T
¢ o 100 X, .
H ) "o,
2 3 e i%x
o} o * K
® 5 M;:(
£ o : N
£ 10007¢ R ] WK
3 by
5 1 i;
g \: 105 1 1 1 L 1
g 0.010 0.013 0.016 0.019 0.022
= Asymmetry amplifude q
100 - | ! L
0 2000 4000 6000 8000 10000 . . .
Number of iferations of the map n FIG. 13. This plot shows the escape time as a function of the

asymmetry amplitude; when e/q>1. The parametee is 0.2 and
FIG. 11. A plot of the number of orbits that are left in the region both axes are on log scales. The dashed line has a slope equal to
ly|<1.5 as a function of the number of iterations of the map. —hy /e, which is the theoretical prediction.
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104 s ! ! . w J FIG. 15. A schematic representation of the results for the model
1.70 L75 1.80 185 1.90 195 =00 with additive noise. The results for the escape times in the various

/(e —e)” .
parameter regimes are shown.
FIG. 14. This plot shows the scaling of the escape time as a

function of the largest transverse Lyapunov exporemthen e is (1) For |E|<q’ we have the result

close to its critical value*. The dashed line is a fit. h
logr~ iy (14
hyle*| Y2 q
|OgT~ ”—*1/2 (13) . . . .
le—e*| Figure 16 is a plot of the logarithm of the escape time as a

function of 1/q for the system in(1) with §;,=0, §,=1 and

The dependence log|e—€*| 2 for a constanty can be e=0.01. The dashed line is a fit and the data lie along this
viewed as a consequence of the result derived ) where  line in agreement with the predicted scaling.
the authors study the chaotic transient time due to an attrac- (2) For e positive ande>q, we obtain
tor that is destroyed by a crisis that is mediated by the coa-
lescence of a saddle periodic orbit on the attractor with a hy
repellor periodic orbit on the basin boundaffhis is the logr=—_log(e/q). (15)
relevant type of crisis in our cageee Fig. 1§ and is called
an unstable-unstable pair crigi$7]). Equation(13) shows Figure 17 is a plot of log as a function of log with
that as we approach the critical lire= €* at constanfj by  €=0.2. The dashed line corresponds to the theoretical slope
decreasinge, we have that log diverges asle—e*|""%  of —hj/e and the data agree with the prediction.
Similarly, as we approach the critical line at constarby (3) The results in items 1 and 2 above are universal in the
decreasing q, We have that log diverges as sense that they depend only on the noise varigicand not
lg—qg* (€)| "Y? where g* (¢)~(— €)*2 Figure 14 shows a on the form of the noise probability distribution function.
plot of logr as a function of 1€— €*| Y2 for a constant value Our calculationgnot given herglead us to conjecture that
of q. for e< —q this universality does not hold, and, in particular

The scaling results in items 1-6 of this section are sumthe form of the low probability tail of the distribution is
marized in Fig. 6. Note that the resultsl) and(12) agree in  important. Thus, qualitatively different scaling may result,
the crossover regiméshown hatched in the figureAlso  for example, for Gaussian and bounded noise distributions.
note that(13) and(12) become the same in the region to the  The scaling results in items 1 and 2 of this section for
right of the dashed line which is placed et (3/4)e* [the  systems with noise are summarized in Fig. 15.
factor 3/4 is somewhat arbitrary and can be replaced by any
positive number<1 such that + a~0(1)]. , ‘ . .

B. Results for noise

Figure 15 is a summary of the behavior of the model %M |
system in(1) for the case of noise&; =0, §,=1) in various 10000F 2% ]
regions in (,q) parameter space. In the region
e<€** (q)~ —q the behavior of the system depends on the
exact details of the noise distribution. We refer to this region Wl
as the non-universal regime. k>¢€** on the other hand, I g;f%
results depending only on the noise variagcend otherwise ook XX 1
independent of the noise distribution can be obtained. If ; ]
e€>€e** | almost every orbit that approachgs 0 eventually L. ‘ : ;
leaves the vicinity ofy=0 after which it escapes rapidly to 8 10 e " 10
y=*o, The average time spent in the vicinity of the invari-
ant manifold is given by- which again has different scaling FIG. 16. This plot shows the escape time as a function qf 1/
behaviors in the different regions of parameter space. Wehere q is the noise amplitude and/q<1. The parametet is
discuss these results in the remainder of this section. 0.01. The dashed line is a fit.

Escape time T




1354 VENKATARAMANI, HUNT, AND OTT 54

1057 . w « ‘ x ] where W(Z) is the width ofl{. The escape time is the ex-
i {‘% 1 pected time for a typical orbit of thextnod1 map to end up
. 1 in O. Consequently,
o q Yy
. ", : 7~ 1M, (18)
£ %&w L
g o and this yields
2 b
w * )k B _
'S ~[W() ] *exp(nh)). (19
10 - *x .
* It can be shown that the dependence diV(Z/) is very much
. ‘ . . ‘ weaker than the exponential dependence, xp(e.g., the
0.010 0013 0016 0019 0022 calculation in Sec. VIB impliesW()~0O(1) when
Noise Amplitude g (e— €*)/|€*| is not very small. Consequently, fon>1 we
have

FIG. 17. This plot shows the escape time as a function of the
noise amplitudeg whene/q>1. The parametee is 0.2. Both the
axes are on log scales. The dashed line has the theoretically pre-
dicted slope—h;/e.

|OgT~HIH . (20)

V. ASYMMETRY

When noise and asymmetry are both present, the escape .
time may be estimated as A. Attractor for e<e
For the 2D map in Eq(l) we can demonstrate the results

T=min(7,,7), (16) in item 1 of Sec. Il A, i.e., we can show that there exists an

attractor’5 in the vicinity of the ghost of the invariant mani-

where 7, and r,, are the escape times due to the asymmetryold (y=0) and this attractor is confined to a layer of width
and the noise respectively. We will derive and discuss théd Which is given by Eq(8). From Eq.(1), we have
results stated in Secs. Ill A and Il B in Secs. IV-VI. : 3

It is noteworthy that our scalings and numerical results Yo+l =[N(Xn)Yn+asin2ax, + y) +y;
indicate _remarkaply Ic_Jng escape times even whesnd q <IN)|1Ynl+ G+ [yal3, (21)
are not tiny[e.g., in Fig. 14 the escape timeranges from

10° to 1 for |(e—€*)/e*[~0.3]. where\(x) is given by Eq.(4). We are considering the case

€<0. Consequently|\ (x)|<1—|e|. Also, we assume that
IV. ESCAPE TIME lyn|3<q/2. This assumption is verified later. With this as-

, _ _ sumption, forly,|<3q/(2|€|), we have
We will now obtain a formula for the escape time for the

map in(1). If we are close to the bubbling transition, only
points whosex coordinates are very close to (€he fixed
point of the Zmod1 map that mediates the bubbling transi-
tion) are repelled away fronx, the ghost of the invariant
manifold (X is the sety=0,0<x<1). All other points ex-
perience average attraction towatduntil they land close to
x=0. In particular, there will exist an open &t X con-
taining O such that ifx is outsidel{, an orbit starting at
(x,y) is attracted towards the ghost of the invariant manifold
in the next step and an orbit starting aty) with xe/ is
repelled away from the invariant manifold in the next step.
Therefore, for an orbit starting at0) to get toy=Yax
without returning to the vicinity ofX, we need that
[X,X1,Xs, ... X ]eU, wherel is the number of steps it takes
to get toyax-

Since the dynamical systefd) is a continuous map on _
the phase space, the number of steps required to get to B. Escape times

Ymax IS approximately the same as the number of steps that \we consider the 2D map in Eq1) with 5,=1 and

an orbit starting at (0,0) takes to gety@a«. Letn be the  5,=0. The periodic orbit of the @mod1 map that is the
number of steps that an orbit starting at (0,0) takes to get tehost unstable in the transverse direction is the fixed point at

lyn+1/=30a/(2|€]). (22)

This implies every orbit for the system i) that starts off
near the invariant manifold is confined to a layer of width
A~3q/(2|€]) [this is Eg. (8)]. Also, because the set
[0,]X[—A,A] is compact, every infinite sequence of
points has at least one limit point. This implies the existence
of an attractow3, for the dynamical system if1), within this
set.

In order that our assumption thgf<q/2 hold, since
ly| <A<3q/2| €|, we require §/2)><|e/3|3. This is satisfied
when e< e* = —3(q/2)?3, which is also the exact result for
€* in (26). Consequently, we have an attractor ést €* and
it is confined to a band of widthh ~q/|€|.

Ymax. Then,l=n. x=0. In the vicinity ofx=0, the equation foy, reduces to
If we want[Xx,X1,Xo, ... X ]el, thenx should lie in an
interval O whose widthW, is given by Yni1=Y-+ (14 €)yn+qo, (23)

Wo=exp(—hn)W(), (17 whereqe=gsin(y).
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If y, is a fixed point of Eq(23), then the point (G,) is
a fixed point(periodic point with period Ji, of the map in(1).
The fixed points of Eq(23) are given by the solutions of

yg+ €yp+0o=0. (24)

For the cubic equation i(24) to have three real roots, we
need that

( 2 5) (@)

ymxymn<0-
wherey,, andy,,, are the local maximum and minimum for
the cubic polynomial in24). This yields the condition

2/3

Jo , (26)

<e*r=-—
e<e 32

=

—

which is the result in item 2 of Sec. Il A.

If e<e*, we have three real roots for E@4). Therefore,
we have three fixed points. Two of these fixed points are
unstable but the third fixed point is stable. Therefore, an orbit
starting at (0,0) will not escape to=—c°. It will instead end FIG. 18. These figures show the coordinates of orbits that

up at the fixed point that is stable. By the argument in sechave initial condition (0,0) and escape to infinitg) e>0: I.n this.
IV, this implies that none of the orbits that start off near thecase, most of the steps needed to get away from the origin are in the

manifold y=0 make it out toy=+. They instead end up region where thg® term does not exceed teg or theq, term. (b)

on an attractoB3 in the vicinity of y=0. Further, this attrac- teh:: f'ohsfsg,)eﬂ);elg tht')sin(t;a;j ‘Ef}gflt,z()fl:]htehisgegasszreén (?43 \{;C'trr']';y of
tor is a topolgical attractor and the stable fixed point of Eq. 9 t PO fon- : » =4

(23) is embedded in it. The two unstable fixed points of Eq.appropna & expression fan.

(23) lie on the basin boundary of the attractoryat * .
This demonstrates the results in item 2 of Sec. Il A. This
result is illustrated in Fig. 10. The fixed points in the figure
have been calculated by numerically solving Ezf).

(b)

and the escape time is given by HGQ). Let a(e,q) be a
cutoff such that fory<a(e,q), we can neglect thg® in the

denominator of the integrand. Therefore, we have
For e>€*, Eq. (24) has only one real root. The fixed

a(€,q): ma)(él/Z’q1/3).

point corresponding to this root is unstable. Therefore, an °
orbit starting at (0,0) will eventually end up gt=<. Con-  Consequently, the number of steps needed to get from
sequently, every orbit starting in the vicinity of the invariant (0,0) to (Oy,a,0 iS given by
manifold will eventually escape. As— €*, the stable fixed

J— fa(f:Q) dy JYmax dy

n= + —.

o €T0do Jaeqy

point on the attractoB3 will merge with the unstable fixed
point on the boundary of the basin of the attractor at
— logl1+a(e,q)e/qo] 1
by a chaotic transient. We expect that this behavior is generic n~ € 2[a(e,q)]%"
in systems with asymmetry near the bubbling transition.

y= * as the two roots of the cubic {{24) merge. This is a
By the argument in Sec. 1V, it suffices to consider an orbitUsing this equation with the results in E@Q0) and(29), we

(29

(30)

(31)

boundary crisis as a periodic point in the attractor mergedhis yields
with an unstable periodic point on the basin boundary. The
attractor3 is therefore destroyed in a crisis and is replaced

starting at (0,0) to evaluate the escape timedbre* . Be-

cause of they> nonlinearity, there exists @may such that if
|Vnl>Ymax, the orbit rapidly goes to the attractor atee

obtain the scaling results in items 4 and 5 of Sec. Il A.
Figure 18a) shows they coordinate of an orbit starting at
(0,0) for e>0. Note that in this case, most of the steps

independent ok,,. Letn be the number of steps that an orbit required to get toy=yna are in the region where thg?

starting at (0,0) takes to get to (s If <1 ande<1,
the number of steps required is large, irex 1. In that case,
we can replace Eq23) by the differential equation

dy(n)
dn Y ey tdo. (27
We can then evaluate by
_ Ymax d
n~ Y (28

o Y tey+qp

nonlinearity can be neglected. Fer €*, the cubic in(24)
has a repeated root gt=|e/3|Y? which is in the range of
integration in(28). For e close to but larger thar*, the
cubic in the denominator of the integrand(28) has a qua-
dratic minimum aty=|e/3|2 and most of the steps that an
orbit from (0,0) takes to get to (¥4, are in the vicinity of
this point[see Fig. 1&)]. In this cas€31) is not valid and a
separate analysis is required. Nga# | /3|Y? we have

y3—|ely+ao=(y+2|e/3[VH(y—|e/3H?

+(qo—2|€3)%?). (32
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Therefore, we obtain

— [ Ymax dy
n= _3—
0o Y teytQo
1 JYmax dy 33
R IR R Pl
where e* is given by Eq.(26). If € is close toe*, so that

|e/3|>|e—€*| andq is small so thay/ ., we have,

N aa
~ (3]€* |)1/2|E_ e |1/2- (34)
Using Eq.(20) we obtain the result
logr~hy|e*| V2 e— ex |12, (35)

which is the result Eq(13) in item 6 of Sec. Il A.

A more accurate expression can be obtained by udifig
to write logr~nh—logW({) in place of(20). Although the
term logM{/) is of higher order as compared tth, its
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for y<a(e,q), we can neglect thg® nonlinearity and for
y>a(e,q), the only important term is thg®. Then, we have

n_=n1+ I’l2, (39)
wheren, is the typical number of steps needed to get from
(0,0) to (0,a(e,q)) and n, is the typical number of steps
needed to get fronf0,a(e€,q)) to (Oymay- We can evaluate
n, by

meax dy 1 (40)
Ny~ S~ 7.
> aeay®  2ale)]
We will now evaluaten,. Fory<<a(e,q), Eq.(38) reduces to
dy(t)
T =ey+qu(t). (41
We can solve this equation to get
t ’
y(t)zqf p(t")es"dt’. (42)
0

inclusion may improve the accuracy of the result in some

cases. To estimat&/(L/) we write A(x) from (4) as

ANX)=1+e—(r/2)x*>+0O(x*).

We note that bothe and — (r/2)x? have similar effects in

that they causer(x) to deviate from 1. Thus, if r(2)x?

exceedd e— €*(q)], the orbit will return to the vicinity of

the invariant manifold. Hence we have
W) ~|e—€* ()]
and(35) is replaced by
log[ | e— €*|*27]~hy| * | Y% e— * |2 (36)

[If log|e—e*| %2

in Fig. 17]

VI. NOISE

A. Escape times

From this, we get

t [t , .
E[[y(t)]Z]:qZJO JOE[V(t/)V(t//)]ee(t—t )es(t—t )dt,dt”_
(43

Therefore, we obtain

2

Elly(0)]2]= 5-(e*'-1). (49

If >0, the variance of/(t) increases without bound and it
will eventually become greater thafa(e,q)]?> for any
a(e,q). The time taken for the variance to becom@ is

is small compared to the right-hand side, n,. Therefore,
then (36) reduces tq35). This is valid for the range plotted

log{1+2€[ a(e,q)1%/9%}

1= e (45)

If e<0, the variance of(t) grows till a timet,~ 1/ €| when
it has a valueg?/2|e|. Now, if q%/2/e|>[a(e,q)]% n; is

In this section we will calculate the escape time for theagain given by the expression (45).

model in(1) with §;=0 andd,=1. The escape time is again

The cutoffa(e,q) is determined by the following argu-

given by (20) wheren is the typical number of steps that an ment. Assume that we have an ensemblBl afrbits all start-

orbit starting at (0,0) takes to get {9|>Ymax-
An orbit starting at (0,0) is given by,=0, and

37)

If n>1, we can replace the difference equationyigiby the
(stochastig differential equation

Yn+1=(1+ f)yn+yﬁ+an-

d
Sy au Y, (39

where v(t)

E[v(t)p(t')]=8(t—t').

iS a continuous time noise process with

ing at (0,0). Then, after a time,, they coordinates of the
orbits have a distribution with a variance closea(@,q)?. If
we wait for anothem<n, steps, the average drift due to the
ey term in(38) is

~m|ela(e,q). (46)
The change in the standard deviation of theoordinates of
the orbits in the ensemble due to the ndidenoted byA,)
can be estimated from the linear increase of the variance with
time,

(47)

(a+Az)?—a*=md’,

If we are close to the invariant manifold, we can neglect

the y® nonlinearity in(38). Let a(e,q) be a cutoff such that

appropriate to the random walk
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dy Consequently, we have
gt —av. (49
W(U)~O(1). (58)
We therefore obtain Forg—0, we have,
A,~mq?/a(e,q). (49 q<WU). (59)
The average drift due to the’ nonlinearity is Based on our claim above that E(l7) is valid when
. 3 g<W(l), the noise in thex direction does not affect the
Ag~ma(e,q)”. (50 scaling results for the escape time in Sec. Il B. We now

verify this claim.

The cutoffa(e,q) is determined by requiring that Let an orbit starting atx,,0) escape without returning to

As<maxA;,Ay). (51  the vicinity of y=0. Then,xo.,X;, . .. X lie in U. Assume
that the noise perturbatiorgpy,qvy, ... ,qv,_1 have been
From this, we obtain chosen. Then sincg e U, its preimagex, _, must lie in a set
U, of half the width ofl{; the location ofl{,_, is not
a(e,q)~max |e["%,g"?). (52)  centered at 0, but is shifted by half the noise perturbation

_ _ qv_;. Since the size of this translation is of ordgrit is
Equations(52), (49), (40), (39), and (20) together yield the g compared witw(z4), and thus,_, is insidel/. Like-
results in items 1 and 2 of Sec. Ill B. wise x,_, must lie in a setd_, of width half that ofl4_,,

andi, _, is contained iri4, and so on. We conclude thag
B. Noise in thex direction must lie in a self, of width W, whereW, is given by Eq.

We consider now the effect of adding noise to the dynam{17) with h;=log2.
ics of x in our model(1), as in Eq.(2). Our estimates of the By this argument, we expect that the results we derive
escape time have been based on the premise that in order4§ing the map in(1), which does not have noise in the
escape, the coordinate of the trajectory must stay within a direction, are also valid for more realistic models which have
neighborhood/ of the fixed point at O fot~n iterates, and @ more isotropic noise. We also note that this argument gen-
that to do sox must fall within an interval of length approxi- €ralizes beyond thexanod1 map.
mately W, given by Eq.(17). We claim that Eq(17) con-
tinues to hold as long as the noise strengtiiwhich we VI INTERMITTENT BURSTING
assume is of the same orderggsis small compared with the
width W(U) of U.

The width of/ can be estimated as follows. The neigh-
borhoodi/ is determined by requiring that Kq,X,, ... X
e U, the orbit closely follows an orbit starting at (0,0). For
this to hold over steps, we need

As we discuss in Sec. I, for a system that displays the
bubbling transition, there are two cases of interest. In the first
case, there exist attractors in the phase space off the invariant
manifold. This situation leads to the occurrence of riddled
basins and it has been considered in Secs. llI-VI. In the
other case, the symmetric noiseless system has no attractors

[ other than the one in the invariant manifold. In this situation,
H M) ~[\(0)]", (53 & small noise or asymmetry will cause the system to burst
i=1 away from the invariant manifold intermittently. The mecha-

. ) . nism of bursting is the same as the mechanism for the escape
where)(x) is the transverse expansion factor definedn  of orbits in the first case. In this situation, however, almost
From Eq.(4), we have every orbit eventually returns to the vicinity of the symmet-

ric noiseless invariant manifold because there are no attrac-
ANX)=1+e— £x2+0(x4)%)\(0)exp(—rx2/2). (54) tors off thg inyariant manifold. This orpit will thgn spend a
2 length of time in the vicinity of the invariant manifold before
_ it again bursts away.
For g<W(Z/) we can neglect the noise perturbations in Eq. The transition to bursting behavior as is increased
(2). In this case, throughe* can be of the following two types:
o~ 2y (55) (i) As € is increased througk* , the bursts appear with an
! 0 amplitude that increases continuously fram the width of
the attractor fore<<e*. We will call this type of bifurcation
a soft transition
I rJ (i) As € is increased througk*, the bursts appear with a
11 )\(xi)%[)\(O)]lex[{ -=> Xlz) (56) large amplitude. The maximum deviation from the invariant
=1 21=0 manifold changes discontinuously fro@(A) for e<e* to
« ) s . .
The set!/ is therefore determined by requiring that, tCr)a(lrl]gitfic(;rne>e - We will call this type of bifurcation dard
| The map in(1) has attractors at « that are offy=0, the
2 xi2~4x|2/3~0(1). (57) invariant _manifold for _the symmetric noiseless system. We
i=0 can modify the map in1) in two ways to remove these

Therefore



1358 VENKATARAMANI, HUNT, AND OTT 54

0.10T » ] in the vicinity of the ghost attractor that was discussed in
i ] Secs. llI-VI. Therefore, from the results of the earlier sec-
- ] tions, the duration of the laminar phases is exponentially
0060 A distributed. The probability density(t), that a laminar
A : phase has a lengthis given by

P(t)~e Y7, (62)

y(n)

where 7 is the average interburst interval.

All these bursts occur when thecoordinates of the orbit
are near those of the periodic orbit that mediates the bub-
1 bling transition. Lein denote the typical number of steps that
‘ ' J an orbit starting at (0,0) takes to get toy(g),. Then,

600 800 1000
" — (Yo dy
I . . n~=| —————=, (63
FIG. 19. A typical time series of,, for the system i60). The 0o Qotey+ny
system spends most of its time in the vicinity of the “ghost” mani-
fold (y=0) but it bursts away intermittently. where =1 for the hard transition angg=—1 for the soft

transition. By our earlier arguments, the average length of
attractors. One way is to replace tHQ/ﬁ nonlinearity that the laminar phase scales according to &4).
drives orbits away frony=0 by the confining— yﬁ nonlin-
earity. In this case, we have the dynamical system VIIl. SYNCHRONIZED OSCILLATORS
WITH ASYMMETRIC COUPLING
Xpt+1=2X, modl,
As discussed at the end of Sec. I, a situation of experi-
Yni1=11+e—r[1—cog2mXy)|}Yn+qsin2mx,+ y) —yﬁ . mental interest is the synchronization of electrical oscillators.
(600  This is typically done by making the oscillators nearly iden-
tical and electrically coupling them together. This coupling
Figure 19 is a typical time series of, generated by the may or may not be symmetric. In the case of symmetric
model in (60) with e—€* small and positive. The system coupling, our previous considerations of Secs. II-VII apply.
spends most of the time in the vicinity of the invariant mani-In the case of asymmetric coupling, the basic model (Ey.
fold (the laminar phasgbut these periods are interrupted by must be modified. In particular, as discussed in Sec. Il, the
short bursts where the system leaves the vicinity of the infowest order nonlinearity ig? rather thary?. In this section
variant manifold. we consider the asymmetric coupling case. In the noiseless
The—yﬁ nonlinearity in(60) ensures that, for some range case, they-equation of(1) is replaced by
of parameters, orbits starting nea=0 are bounded. In this
parameter range, every orbit is bounded to a et Yiax, Ynr1={1+ e—r[l—cos{wan)]}yn+yﬁ+ gsin(2mx,+ vy).
where, from(60) with x=0, y,.x satisfies (64)

Ymax=(1+ €)Ymaxt Go— Y a. (61)  The nonlinearity is written as-y2; changing+y? to —y? is
equivalent to changing the sign gf As we discuss in the
Every burst has a height less than or equalytp, and preceding section, we can have both a hard and a soft tran-
Ymax IS @ continuous function of. Therefore, the transiton at sition depending on the various parameters in the system.

e=€* for the map in(60) is a soft transition. For (64) the transition is hard fogy= qsiny>0 and soft for
We can also remove the attractorsyat =« for the map u<O.
in (1) if we retain the+y? nonlinearity but we modify the Figure 20 summarizes our results on the effect of asym-

map in the region far frony=0 [i.e., |y]~O(1)] in such a metry for this case. In the soft casg,<0, we state results
way that the orbit remains bounded. In this case, forfor the attractor widthA in the various regimes. Note the
€>€*, an orbit that leaves the vicinity of the former noise- close qualitative similarity of thg>0 region with Fig. 6 for
less symmetric invariant manifold is pushed further away bythe case of symmetric coupling.

the y® nonlinearity. However, when it gets {g|~0O(1) it As before, the results for the scaling ofare obtained
can go no further. In this situation, ass increased through from (20). The scalings fon, however, are now modified,
€*, the bursts appear with a larfjee., O(1)] amplitude; that and are obtained from the differential equation approxima-

is, there is a hard transition. tion to (64) nearx=0,

We will define the laminar phases to be the set of time
indicesn such thatly,|<y,, for some chosen threshoig ﬂ: ey+y2+q (65)
wherey, is small compared to the maximum burst size. In dn 0

the context of synchronized oscillatosg, is the maximum . ]

deviation from synchronization that is acceptable. TheFrom this we obtain

mechanism for this bursting is the same as the mechanism A q

for the escape of orbits in the riddled basin case. Conse- @j —y. (66)
quently, a laminar phase is analogous to the chaotic transient 0 ot ey+y?
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e=¢ = -C¢’?
A
S "
e .. Crossover
h“q_l/4 regime
logr ~ —————
*)1/2
(e-e*)1/ e
T =00
Attractor with
width A . S by ¢ FIG. 20. A schematic representation of the re-
A~ q/le| S log7 ~ ?IOSE sults for the model with asymmetric coupling.
o The scalings in the various regions of the param-
- eter space are shown.
A~ qflel

Approximating this integral in the relevant parameter rangesnanifold if there was no asymmetry or noise. The invariant
and using(20), we obtain the results for in Fig. 20. To  manifold is destroyed if we have a small asymmetry or ad-
obtain the results foA, we note that the furthest extent of ditive noise. We derive scaling relations for the average
the attractor(when the attractor is limited to the region near |ength of the chaotic transient the attractor width, and the
y=0) is determined by ar=0 fixed point on the outer edge bifurcation parameters at crisis, and we numerically verify
of the attractor. Setting=0 andy,=Y, 1 in (64), we ob-  the predicted scalings.
tain (A=[yy|) In physical experiments, unavoidable small asymmetry
and noise limit the observability of riddled basins and induce
—€X e —4q 6 intermittent bursting. Our results delineate the time scale
2 67) over which the noiseless symmetric idealization is relevant

in experiments near the bubbling transition.
with the appropriate choice of the plus or minus sign, which

yields the results folA in Fig. 20. The crisis at=€* (q),
occurs when two fixed points at=0 merge. Therefore, ACKNOWLEDGEMENTS
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